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Fig. 1. MedChemLens: (A) The Drug Target Search view allows users to search drug targets by name. (B) The Signaling Pathway
view presents the signaling pathways of the targets under search. (C) The Overview shows the overall distributions of the existing
drug compound research. (D) The Publication Trend view displays the number of publications over time related to the targets under
search. (E) The Detail View consists of (E1) the Chemistry panel, which summarizes the drug compounds proposed in chemical
publications, (E2) the Pharmacology panel, which displays the molecular feature values of the drug compounds tested in in vitro and in
vivo pharmacological assays, and (E3) the Clinical Pharmacy panel, which visualizes the clinical trial progress of the drug compounds.

Abstract— Interdisciplinary experimental science (e.g., medicinal chemistry) refers to the disciplines that integrate knowledge from
different scientific backgrounds and involve experiments in the research process. Deciding “in what direction to proceed” is critical for
the success of the research in such disciplines, since the time, money, and resource costs of the subsequent research steps depend
largely on this decision. However, such a direction identification task is challenging in that researchers need to integrate information
from large-scale, heterogeneous materials from all associated disciplines and summarize the related publications of which the core
contributions are often showcased in diverse formats. The task also requires researchers to estimate the feasibility and potential in
future experiments in the selected directions. In this work, we selected medicinal chemistry as a case and presented an interactive
visual tool, MedChemLens, to assist medicinal chemists in choosing their intended directions of research. This task is also known
as drug target (i.e., disease-linked proteins) selection. Given a candidate target name, MedChemLens automatically extracts the
molecular features of drug compounds from chemical papers and clinical trial records, organizes them based on the drug structures,
and interactively visualizes factors concerning subsequent experiments. We evaluated MedChemLens through a within-subjects
study (N=16). Compared with the control condition (i.e., unrestricted online search without using our tool), participants who only used
MedChemLens reported faster search, better-informed selections, higher confidence in their selections, and lower cognitive load.
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1 INTRODUCTION

Interdisciplinary experimental science (e.g., medicinal chemistry, bio-
physics, and biomedicine) refers to branches of knowledge that inte-
grate the data, methods, and theories from different scientific back-
grounds and employ experiments as the key research approach [29, 52].
Deciding “what research direction will be feasible and promising” is
usually the first step of the entire research process in such disciplines [1].
Given that the research process of interdisciplinary experimental sci-
ence is often time-consuming and resource intensive, identification



of the right starting point in the initial stage of scientific inquiry can
increase the chance of ultimate success. For instance, in medicinal
chemistry, it may take more than 10 years from the identification of
related chemical entities to marketed drugs [57], and cost at least a
billion dollars [46]. If medicinal chemists choose to design drugs that
interact with a human protein incapable of being modulated by any
biological therapy, their design is likely to fail in the experimentation
stage [14], leading to a substantial waste of time and money.

Despite its importance, research direction selection in interdisci-
plinary experimental science is never an easy task. First, researchers
often need to comprehensively integrate and make sense of large-scale,
heterogeneous data from all related disciplines to evaluate candidate
directions from both theoretical and practical perspectives [34]. They
want to establish solid knowledge grounds for later hypothesis-driven
experimentation, learn from lessons of prior research to minimize risks,
and assess their competitiveness down the chosen path. However, exist-
ing scientific literature analytic tools often focus on document organiza-
tion [11, 19, 25, 61], retrieval [5, 10, 18, 28], and discovery [6, 7, 23, 40].
Few works support the decision-making in research process and help
balance the considerations from both science and strategy aspects. Sec-
ond, existing methods for extracting and organizing data from scholarly
documentations (e.g., publications, lab reports, etc.) may not adequately
meet the data integration needs of researchers in interdisciplinary ex-
perimental science fields. For example, medicinal chemists commonly
organize literature by the chemical structures of drug compounds pro-
posed in the papers [3], while documents are conventionally grouped
and indexed by keywords [60,63], author network [36,62], and citation
links [5, 27]. Third, it is challenging for researchers in interdisciplinary
experimental science to estimate the feasibility and difficulties of future
experimental testing, a critical research component, stemming from
their decisions. When inspecting a candidate research direction, indi-
vidual researchers or research groups may have different concerns, such
as personal skills and laboratory resources available for experiments.

In this work, we selected medicinal chemistry as a case to demon-
strate how an interactive scientific literature analytic system can help
address the aforementioned challenges in the research direction selec-
tion in interdisciplinary experimental science. Medicinal chemistry is a
scientific discipline at the intersection of chemistry, pharmacology, and
clinical pharmacy [22]. In medicinal chemistry, for a specific disease,
researchers need to select a particular drug target (i.e., disease-linked
proteins in the human body that are agents being modulated by drugs
to produce therapeutic effects) from a pool of candidates, and then
design and test out drug compounds against the chosen target [30, 32].
We proposed an interactive visual tool called MedChemLens to assist
medicinal chemists in the identification of a drug target that is most
likely to lead to a promising research path of subsequent drug design.
MedChemLens integrates and visualizes relevant literature and data
from three related disciplines: chemistry, pharmacology, and clini-
cal pharmacy. It retrieves drug compounds associated with the given
drug target candidates that have been reported in scholarly publications
and extracts the key molecular features of these compounds from the
text, images, and tables of the returned documents. With these data,
it enables the organization of the related papers by similarities in the
chemical structures of the drug compounds in connection to each can-
didate target. Moreover, MedChemLens facilitates the exploration of
potential research paths following different drug targets to help users
evaluate the practicality and potential risks of the chemical experiments
in future research processes. A within-subjects user study with 16
medicinal chemistry researchers of various levels of expertise provided
support for the usefulness and effectiveness of our system.

In summary, our major contributions are:

• MedChemLens, an interactive visual tool to support medicinal
chemists to evaluate possible research directions by analyzing
and comparing relevant literature and experimental data.

• A within-subjects user study that demonstrates the effectiveness
of our approach in helping users select research directions in the
interdisciplinary experimental research of medicinal chemistry.

2 RELATED WORK

2.1 Visual Analysis of Scientific Literature

Plenty of research has been conducted to provide interactive visualiza-
tion to support the exploration and analysis of scientific literature. They
mainly focus on assisting users in searching, organizing, and retrieving
their desired research papers from broad sources. For example, Benito-
Santos et al. [6] presented GlassViz that helps researchers explore a
large document corpus by visualizing the entry points. Costagliola et
al. [13] proposed a 3D analytical interface, CyBiS, that shows document
items as spheres embedded in a 3D cylinder and supports operations
such as rotate to refine search. To organize and reveal the relation-
ships between documents, Zhao et al. [62] proposed PivotSlice which
applies both node-link view and customized dynamic tabular view to
represent the relationships across literature data items. Wang et al. [54]
developed TopicPanorama which combines a radial icicle plot and a
density-based graph to show a full picture of relevant topics from multi-
ple sources. Moreover, some existing systems were proposed to support
retrieving users’ desired information from documents. For example,
Beck et al. [5] presented SurVis which contains a word-sized sparkline
enabling users to conduct textual search on details such as keywords,
meta-information, and relationships. However, the visual analysis of
scientific literature in our scenario is more complicated since we need
to not only help researchers browse and explore related literature to
establish solid knowledge backgrounds but also support the trade-off
of risks and output of research paths to help researchers in decisions-
making process. In addition, future experimental testing might affect
researchers’ research direction selection, yet few existing works have
managed to help estimate its feasibility and difficulties.

In the existing visual scientific literature analytic tools, the publi-
cations are mainly organized and indexed by citation links, keywords,
and author network. For instance, Burger et al. [7] applied citation
contexts to develop a word-document 2D projection in their proposed
visualization scheme cite2vec. Dattolo et al. [15] presented Visual-
Bib which groups papers based on the corresponding bibliographies.
Elmqvist et al. [20] comprehensively applied keywords, co-authorship,
and citation to organize publications in their system CiteWiz. However,
the information that researchers in interdisciplinary experimental fields
are interested in goes beyond these data types. For example, it is a
common practice in chemistry to organize publications by the images
of molecular structures. While there is existing work emphasizing the
importance of the images in publications (e.g., Chen et al. [9] proposed
a dataset called VIS30K that represents visualization papers with fig-
ures), they still built the relationships between publications based on
conventional data types, which cannot satisfy the needs in chemistry.

2.2 Visualization for Drug Target Selection

Previous works have explored different visualization methods to assist
medicinal chemists in drug target selection. These methods were mainly
used to present data within a specific discipline or across disciplines
in the drug discovery process. For the visual representation of data
within one area, node-edge network is widely applied in existing tools.
For example, Promiscuous [50], Dinies [58], and TargetNet [59] were
all web-based services that use node-edge networks to represent drug-
target interactions. Furthermore, multimodal visualization interfaces
are utilized for multifaceted data. For example, Open Targets Plat-
form [33] integrated pathway overview maps and hierarchical networks
to present drug-disease associations. Pharos [39] assigned different
diagrams based on the data type, such as radial pie chart for categorical
data and word cloud for textual data, to help aggregate information
about drug targets from diverse resources. However, these tools only
focus on a single area and fail to connect the disciplines involved in
the drug discovery process. Some visual tools have been proposed to
display data across disciplines. For example, ChEMBL [38] integrated
medicinal chemistry data with pharmaceutical knowledge by creating a
sunburst view to show the drug target classification and a heatmap view
to show molecular bioactivity. However, such systems only provided a
broad view of drug targets but lacked summaries of relevant research
which would benefit medicinal chemists’ future drug design.



3 DESIGN PROCESS

Our goal is to support an in-depth and systematic exploration of litera-
ture and experimental data to help medicinal chemists decide potential
directions (i.e., drug target selection) in their interdisciplinary exper-
imental research. Our design process started with a two-hour semi-
structured interview with each of six researchers (E1-E6) in the field of
medicinal chemistry to understand the current practices and challenges
of drug target selection. E1 is a university professor with 9 years of
research experience; E2 and E3 are postdocs in key drug discovery
laboratory with 9 years of and 7 years of experience, respectively; E4
and E5 are senior PhD students (4 years of experience); and E6 is
a junior (1-year) PhD student. Based on their feedback, we derived
a set of design requirements which guided our initial system design.
In the later stages, we carried out bi-weekly meetings with these six
researchers for three months to iteratively update the system design to
ensure that our implementation addresses the requirements.

3.1 Factors Related to Drug Target Selection
Based on the interview results, we summarized the factors considered
by medicinal chemists in the drug target selection process.

1) Drug discovery process is a multifaceted process including the
research of chemistry, pharmacology, and clinical pharmacy. E2-E5
reflected that medicinal chemists often integrate the knowledge of these
related disciplines and evaluate the current research progress of poten-
tial drug targets as reported in the literature and experimental reports
along this process. Usually, after deciding to proceed with a particular
drug target, chemists are mainly concerned with structure activity de-
signs and chemical synthesis of potential drug compounds that could
interact with the selected target [30]. Then the drug compounds are
progressed to the next step for pharmacological testing, which includes
in vitro tests (i.e., experiments conducted on microorganisms or cells
outside of a living organism [43]) and in vivo tests (i.e., experiments
conducted in a living organism, such as animal models [43]). Subse-
quently, drugs go through clinical trials with human subjects [43]. The
clinical pharmacy research consists of three phases – phase I, phase II,
and phase III, during which the adverse effects of drugs are tested.

2) Drug target properties consist of the drug target structure, drug-
gability, and signaling pathway. E3, E4 and E6 suggested that medicinal
chemists are interested in these properties because these properties can
facilitate them to initially filter targets. Drug target structure is the
protein structure of the drug target. Druggability is the likelihood of the
drug target being able to be modulated by a drug [41]. To evaluate the
druggability, chemists need to know the research progress of existing
drug compounds for each candidate target. A Signaling pathway shows
a chain of proteins activated by drug compounds binding with drug
targets [42]. Upstream proteins undergo biochemical reactions and
transmit signals to downstream proteins until therapeutic effects are
produced. A signaling pathway often contains several drug targets.

3) Molecular features of drug compounds often serve as the basis
for evaluating the proposed drug compounds in terms of their viability
as potential new drugs and are of major interest to medicinal chemists.
All researchers we interviewed stated that they always spent the major-
ity of their time searching and reading related research publications to
know the existing drug compounds against each candidate drug target.
The molecular features they care about are tested in different drug
discovery stages and thus may appear in different sections of a paper in
a wide variety of forms. We describe the details of them in Table 1.

3.2 Design Requirement
Based on the analysis of the medicinal chemists’ feedback, we summa-
rized six design requirements for our system design.

R1. Enable intuitive comparison of different targets on different
scales. The system should support the comparison of candidate drug
targets in different aspects, including the target properties, the research
trend and popularity of targets over time, and the individual molecular
feature of interest. For example, E3 said that medicinal chemists can
directly filter out the candidates that do not satisfy their requirements
for research directions by having an overview about the volume and
stage of the related research. For the remaining candidate targets,

researchers need to check detailed drug compound research information
and progress to make their final decisions.

R2. Provide a comprehensive picture of the research about
each candidate drug target in three relevant disciplines. The system
should provide an overarching summary of the drug compound research
about each drug target. As mentioned by E1 and E3, each publication
has a research goal of designing new drug compounds to enhance cer-
tain molecular feature(s). Researchers want to know the number and
the overall distribution of the drug compound research focusing on
each molecular feature. In addition, E2, E4 and E5 mentioned that as
the same drug compound should be studied by different disciplines
in different drug discovery stages, the related scholarly documenta-
tions are scattered in large-scale online resources from various fields.
Since integrating research about the same drug compound manually is
difficult, research data on the same drug should be connected across
disciplines and following the drug discovery process to facilitate medic-
inal chemists to streamline the literature survey process and track the
development of each drug compound.

R3. Organize scholarly documentations following the practice
of each individual discipline. Researchers require an organization and
presentation of the scholarly documentations to show the correspond-
ing research landscape and status in each individual discipline. All
researchers pointed out that the chemical structures of the drug com-
pounds are the core findings of medicinal chemical publications, and
it is a common practice for medicinal chemists to organize literature
based on chemical structures. In pharmacology, researcher focus on
the values of molecular features tested in pharmacological assays. For
clinical pharmacy, they want to know the status information for clinical
trials, such as “how many organizations are conducting clinical trials”
(E1) and “why some clinical trials were terminated” (E4). Visual de-
signs should be adapted for different data types to help users process
and digest the heterogeneous research data in different disciplines.

R4. Inspire drug target selection process and future drug com-
pound design. Researchers demand inspiration for the drug target
selection process. E4 and E5 said that the system should help inspect
signaling pathways to find the connection between the candidate drug
targets and remind users of previously overlooked targets that could be
candidates. E2 and E6 added the importance of knowing the shortcom-
ings of existing drug compounds and possible improvements so that
users can get ideas for future research paths and drug design.

R5. Support estimation of the feasibility and difficulty of fu-
ture practical experiments. The system should facilitate medicinal
chemists to assess the feasibility and challenges of practical implemen-
tation when engaging in the medicinal chemical research related to
the candidate drug targets. E1 and E4 hope the system can show the
synthesis route lengths of the previous drug compounds against the
candidate drug targets as indicators of synthesis difficulty and display
what kinds of chemical structures can be advanced better in the course
of drug discovery. Based on the molecular similarity principle [3] (i.e.,
two structurally similar molecules often have similar properties and can
be analyzed using similar testing models), empirical information of ex-
isting studies can provide implications for the experimental feasibility
of the new drug compounds designed by medicinal chemists.

R6. Facilitate an interactive and customized data exploration.
We observed that individual medicinal chemical researchers or research
groups may have different focuses, information needs, and exploration
patterns. E2 and E6 added that their research interests, abilities, and
available laboratory facilities may also vary. Hence, the system should
enable users to customize their preferences on different evaluation
metrics and decision-making patterns interactively.

4 MEDCHEMLENS

We presented a visual analytic system MedChemLens to aid medicinal
chemists in exploring literature and experimental data to select drug
targets. MedChemLens incorporates the following five views. The
Drug Target Search view (Fig.1 A) allows users to search drug targets
of interest and inspect their 2D structures (R1). The Signaling Pathway
view (Fig.1 B) visualizes the interactions between the drug targets under
search and prompts users for other possibly overlooked targets (R4).



Table 1. Molecular features about drug compounds that participants focus on during drug target selection

Discipline Molecular Features Description

Chemistry

IC50 The concentration of an inhibitor needed to block a given predefined stimulus by 50% [44].
Inhibition constant (Ki) The concentration needed to perform half maximal inhibition [44].
Kd The equilibrium dissociation constant of a ligand receptor complex measured in a binding assay [30].
Selectivity The drug’s ability to preferentially produce a desired versus a non-desired effect [8].

Pharmacology

in vitro

IC50 Similar to IC50 in Chemistry but the inhibition is on cell receptors instead of enzyme [44].
EC50 The effective concentration of an agonist producing half maximum response to the particular drug [30].
Selectivity Similar to selectivity in Chemistry but with fewer reaction sites.
hERG The inhibition of hERG channel. Lower value indicates lower cardiotoxicity and therefore lower risks.
Solubility The maximum saturation concentration of a substance in a solvent [47]. High solubility is desired in drug design.

in vivo

ED50 A dose or concentration of an agonist producing half maximal pharmacological effect in vivo [17, 30].
Half-life The time required for the concentration of a drug to decline to half of its initial value [44].
AUC The area under the plasma drug concentration-time curve.
Bioavailability The extent a drug becomes completely available to its biological destinations [12].

Clinical
Pharmacy

Adverse effects Any undesired harmful effects in a patient or clinical investigation subject administered a pharmaceutical
treatment and which is not required to have a causal relationship with this treatment [26].

The Overview (Fig.1 C) presents the overall performance distributions
of existing drug compound research on the candidate targets to help
understand the current research progress and difficulty as measured by
assorted molecular features and inspire possible areas of improvement
(R1, R2, R4, R5). The Publication Trend view (Fig.1 D) shows the
research trend of each drug target searched by the user (R1). The
Detail view (Fig.1 E) facilitates a detailed exploration of the research
landscape of candidate drug targets in each discipline (i.e., chemistry,
pharmacology, and clinical pharmacy) and helps integrate the research
data across disciplines (R1, R2, R3). Furthermore, a collection of
interactions, such as sorting, highlighting, and tooltips, is also provided
for users to examine and compare the drug targets freely (R6).

4.1 Drug Target Search View

The Drug Target Search view (Fig.1 A) allows users to type the name
of a drug target (e.g., “EGFR”, “KRAS”) of interest into the search box
and returns a card containing its 2D structure (R1). Information about
associated publications also appears in the same row in the Overview
and Publication Trend view. Users can hover over a structure to enlarge
it. They can also drag the target card up and down to place similar
ones next to each other for easier comparison (R6). Corresponding
information in the Overview and the Publication Trend view will also
change position accordingly. Upon clicking on a card, the detailed
research information of the selected target will be shown in the Detail
View. Users can remove a target and all its related information by
hitting the delete button on its card.

4.2 Signaling Pathway

The Signaling Pathway view (Fig.1 B) aims to help users understand
the interactions between the candidate targets in the search view and
remind users of other drug targets that may be overlooked by them (R4).
Every time a new target is added to the Drug Target Search view, the
Signaling Pathway view displays its corresponding signaling pathway
with respect to other input targets in a tree format. This view allows
users to get a sense of the interconnections (or the lack of connections)
among various targets. In particular, each target is denoted by a unique
node that may be shared by several paths. There could be several
connected components appearing as separate trees. For example, as
JAK (Janus kinase) is the downstream drug target of EGFR (Epidermal
growth factor recepto), ALK (Anaplastic lymphoma kinase), and HER2
(Human epidermal growth factor receptor 2), the signaling pathways of
EGFR, ALK, and HER2 share the node representing JAK in Fig.1 B.
All nodes representing the targets searched by the user are highlighted
for easily locating. In addition, the Signaling Pathway view supports
zooming and panning to obtain a clearer view, especially when the tree
visualization becomes overly complex.

Design alternatives. Initially, we have considered displaying the
signaling pathway of each drug target under search separately in a tree
format (Fig.2 A). However, it will be difficult for medicinal chemists to
integrate the information across these signaling pathways to identify the
relationships between the targets. We then tried to merge the signaling
pathways in a subway map metaphor design (Fig.2 B). Users can click

Fig. 2. Design alternatives for the Signaling Pathway view: A) separate
trees; B) subway metaphor map; C) our current design.

on a drug target of interest, and its signaling pathway will be highlighted
for easier inspection. This makes the relationships between the drug
targets clearer but causes visual clutters. Specifically, when the number
of targets increases, additional overhead is required to distinguish the
intertwined links. Also, the researchers we interviewed (Section 3)
considered keeping redundant links in the combined pathway graph
unnecessary for drug target selection. Thus, we merged the overlapping
links between drug targets in our current design (Fig.2 C).

4.3 Overview
For each drug target, the Overview (Fig.1 C) aims to provide an overar-
ching picture of the drug compound designs related to the molecular
features using a tabular design (R2). Each row associates with a drug
target and aligns with the target’s position in the list of all input candi-
dates in the Drug Target Search view; each column corresponds to a
feature introduced in Table 1. The chemistry- (colored in a red theme),
pharmacology- (blue), and clinical-pharmacy-related (orange) columns
are arranged from left to right following the drug discovery process to
show the research progress of the drug target (R2). The background
color shading of each cell in the chemistry- and pharmacology-related
columns denotes the number of publications whose proposed com-
pounds improved the corresponding molecular feature, while in the
clinical-pharmacy-related columns it encodes the number of clinical
studies in each phase of clinical trials. Darker color implies more publi-
cations fall in the cell; white means no related work exists. The number
of publications is shown in the upper right corner of the cell.

To summarize the performance of related work on a molecular fea-
ture, we displayed the distributions of reported feature values in these
works as a line chart in the corresponding cell (R2). This distribution
can also imply how difficult it is to improve the feature (R5). The x-
dimension represents the published feature values and the y-dimension
indicates the number of publications/studies achieving a value. The
minimum and maximum feature values are displayed on the x-axis
indicating the progress of the research on a particular molecular feature
(R1) and hinting researchers about what can be further improved (R4).
Hovering over each dot on the plot displays a tooltip of feature value
and the number of publications/studies accordingly. Because ongoing
or completed but confidential [48] clinical studies can not report their
study results, there may be no distribution plot summarizing the clinical
trial results even though the cell shows that there are clinical studies
on the drug target. This discrepancy might confuse users about the



research progress. Thus, hovering over a cell without a distribution plot
pops up a tooltip clarifying the reason (“no results reported” or “no
studies completed”). Upon searching a target in the Drug Target Search
view, by default the table will add a new row accordingly containing
all feature columns. Users can remove columns of features by clicking
the delete button in the column headers and add features back from a
drop-down menu in the upper right corner of the Overview (R6).

4.4 Publication Trend View
The Publication Trend view (Fig.1 D) displays the temporal changes
in the number of publications related to each candidate drug target in
three disciplines (i.e., chemistry, pharmacology, clinical pharmacy),
respectively, in area charts. It helps users explore the research trend
and the evolution of each candidate’s popularity over time (R1). Upon
searching a target in the Drug Target Search view, an area chart aligning
with the target item in the search view appears, showing the publication
trend from 1990 to the present by default. Users can adjust the date via
a time slider and the area charts will be adjusted accordingly (R6).

4.5 Detail View
Upon selecting a drug target in the Drug Target Search view, the Detail
View (Fig.1 E) presents the research landscape of the existing works
about it in each discipline (i.e., chemistry, pharmacology, and clinical
pharmacy) (R3). The Detail View aims to help users integrate research
data of the drug compounds against selected target across disciplines
(R2), and compare the detailed drug compound research progress of
the targets (R1). The Detail View contains three panels (i.e., Chemistry
panel (Fig.1 E1), Pharmacology panel (Fig.1 E2), and Clinical Phar-
macy panel (Fig.1 E3)) arranged from left to right following the drug
discovery process. The discipline-specific data points on the same drug
compound in each panel are linked through lines. Hovering over a data
point in any panel highlights the entire chain (R2).

Chemistry Panel The Chemistry panel (Fig.1 E1) summarizes in-
formation about the design and synthesis of drug compounds. Each
chemistry publication that designed new drug compounds against the
user-selected drug target is projected into a 2D canvas as a circular
glyph. The length of the colored segment in the outer ring of the glyph
denotes the length of the synthesis route of the core drug compound
proposed by the publication. The size of the inner core encodes the total
number of drug compounds proposed by the publication. The distance
between each pair of glyphs indicates the structural similarity between
their core drug compounds. Glyphs close to each other indicates they
have similar corresponding chemical structures. When a glyph is hov-
ered on, the molecular features of the core drug compounds emphasized
in chemistry research are displayed in a pop-up tooltip (Fig.5 (b)). The
information of the corresponding publication, including graphic ab-
stracts, title, author(s), publication year, DOI (Digital Object Identifier),
venue, citation number, and affiliation, are also shown in the tooltip.
Users can click on the DOI to check the publication online.

Glyph alternatives. The circular glyph in the Chemistry panel was
designed and refined several times based on the feedback from the six
researchers (Section 3). The first alternative (Fig.3 A) is similar to our
final design except that the total number of drug compounds proposed
by a publication is encoded using a monotonic, sequential color scale
in red hue in the background of the inner core. A darker or lighter color
indicates more or fewer compounds, respectively. However, we rejected
this design as the researchers implied that they hoped to intuitively
understand how big design space is that the compounds proposed by
each paper occupy. Thus, in the second alternative (Fig.3 B), we used
the size of the ring to represent the number of drug compounds in a
paper. However, this design was rejected as it is difficult to identify the
distance between two glyphs to figure out the structural similarity of
their drug compounds. This leads us to the current design (Fig.3 C).

Pharmacology Panel The Pharmacology panel (Fig.1 E2) displays
the common molecular features of each drug compound concerned
in pharmacological testings. It contains two heatmaps correspond-
ing to the in vitro (left) and in vivo (right) assays, respectively. In
each heatmap, each column represents a molecular feature and each
row corresponds to a drug compound. If a drug compound proposed

Fig. 3. Glyph alternatives. The length of the colored segment in the outer
ring all represents the length of the synthesis route while the number of
drug compounds in a paper is encoded differently: A) by the sequential
color scale of the inner core, e.g., a darker color indicates more drug
compounds studied; B) by the size of the ring, e.g., a bigger size indicates
more drug compounds included; and C) our current design.

in some chemistry publications never advances to pharmacological
testing, it does not have a corresponding row in the in vitro heatmap.
Similarly, the in vivo heatmap does not contain rows associated with
drug compounds that have not proceeded to in vivo assays. We applied
a monotonic, sequential color scale in blue hue to the background of a
tile to encode its feature value. Darker (lighter) color indicates higher
(lower) value. White is for the case when certain molecular features
have not been tested and/or reported in the related publications though
the drug compounds have been studied in pharmacological research.
Detailed feature value is displayed in a tooltip when hovering over a
tile. If all the rows cannot be fit into the panel, scrolling will be enabled.
The Pharmacology panel also allows users to sort rows in a heatmap in
ascending or descending order of the values in a specific column (R6).

Clinical Pharmacy Panel The Clinical Pharmacy panel incorporates
a Sankey diagram to show the clinical study information from phase I
to phase III of the drug compounds that have been advanced to clinical
trials (Fig.1 E2). Each section in the Sankey diagram represents a drug
compound and consists of nine subsections arranged in vertical order,
corresponding to nine statuses of clinical studies: 1) not yet recruiting;
2) recruiting; 3) enrolling by invitation; 4) active, not recruiting; 5)
suspended; 6) terminated; 7) completed; 8) withdrawn; and 9) unknown
status [24]. If there are no studies in certain status, the subsection will
be left empty. A subsection contains one or more rectangles, each rep-
resenting an organization that is conducting or has conducted clinical
studies about the drug. The trace connecting rectangles in different
phases shows the progress of each clinical trial conducted by an orga-
nization. Hovering over a rectangle highlights the trace and triggers a
tooltip showing the organization and drug name. If the organization’s
clinical trial is terminated or withdrawn, reasons will be shown too. To
help users easily grasp how many drugs against the selected target are
tested in clinical trials and how many organizations are involved, we
mark each rectangle in the form of ‘drug ID - organization ID’.

5 USAGE SCENARIO

We describe how Hannah, a PhD student in medicinal chemistry, uses
MedChemLens to complete drug target selection. Hannah has picked
four candidate drug targets for cancer, including EGFR, ALK, KRAS
(Kirsten rat sarcoma virus), and STAT3 (Signal transducer and activator
of transcription 3). Now she wants to use MedChemLens to investigate
and compare these targets and choose one as her research direction.

She starts from the Drug Target Search view (Fig.1 A) by searching
four drug targets and inspecting their structures. Then she examines the
Signaling Pathway view (Fig.1 B) and notices that HER2 is an upstream
target similar to EGFR and ALK which she missed in the target candi-
date collection. Thus, she searches “HER2” in the Drug Target Search
view. Also, she finds that KRAS and STAT3 are downstream targets of
EGFR, ALK, and HER2. Thus, if she chooses to study EGFR, ALK,
and HER2, she also need to learn KRAS and STAT3, since upstream
targets taking effect needs to go through downstream targets [2].

Then she turns to the Publication Trend view (Fig.1 D) to under-
stand each drug target’s research popularity and trend. She adjusts the
publication date to 2012 - 2022 as she usually does. The view shows
that EGFR has the most related publications, which indicates its high
popularity and made her tentatively decide to rule out EGFR. Never-
theless, before making the final decision, she further clicks “EGFR” in
the Drug Target Search view and examines existing drug compounds
against EGFR in the Detail View. In the Chemistry panel, she easily
notices that most glyphs are large and lie together, indicating that the
chemical structures proposed were studied in-depth and that the latest
proposed compounds were similar to the previous ones. In the Clinical



Fig. 4. Detail View for STAT3

Pharmacy Panel, she observes that several drugs have passed all three
phases of clinical trials. These information all suggest that the research
about the drug compounds against EGFR is relatively thorough. Hence,
Hannah decides to delete EGFR from the Drug Target Search view.
Following a similar process, she rules out HER2 and ALK.

She then turns to the Overview (Fig.1 C) to compare STAT3 and
KRAS regarding research potential, value, and difficulty. Hannah
estimates that the research progress of STAT3 is better than that of
KRAS. First, there are more clinical trials and reported study results
of STAT3 than those of KRAS. Second, when hovering on the cells
of phase III, the tooltip of KRAS’s cell shows “no studies completed”
whereas the tooltip of STAT3’s cell shows “no results reported”. Hence,
although there is no distribution plot in either cell, the tooltips show
that some drugs against STAT3 have passed clinical trials while the
drugs against KRAS not. Therefore, Hannah judges that STAT3 is more
promising than KRAS. From the white cells in the Overview indicating
no works focusing on the corresponding molecular features, she finds
that some features (e.g., selectivity) in both KRAS and STAT3 are
ignored by previous work, which could have high research potential. As
Hannah’s research lab focuses on the potency of drug compounds, she
views related columns and removes the other columns in the Overview.
She notices that the drug compounds against KRAS achieved better
(lower value is better) IC50 in chemical research stage than those against
STAT3 though there are more related works against STAT3, which
suggests improving the potency of STAT3 may be challenging.

Hannah further uses the Detail View to understand the existing drug
compounds against KRAS and STAT3. Since medicinal chemists de-
sign new drug compounds based on existing ones, Hannah wants to
examine the research potential by comparing the existing drugs on them.
Thus, she studies the Chemistry panel. She notices the glyphs represent-
ing drug compounds against STAT3 mostly lie together (Fig.4), whereas
there are outliers among the glyphs against KRAS (Fig.1 E1), indicating
that the chemical structures in the corresponding publications have not
been studied thoroughly. Hannah therefore comprehensively examines
the information about these publications and pharmacological prop-
erties (in the Pharmacology panel) of the proposed drug compounds.
She also read some papers in detail through the DOI in the tooltip
(Fig.5 (b)). In addition, she figures the synthesis routes of these chem-
ical structures are not long, and some structures have been evaluated
by pharmacological testings. Thus, she estimates that designing drug
compounds against KRAS based on these scaffolds would be feasible.
Hannah finally compares STAT3 and KRAS in the Clinical Pharmacy
panel. It shows that three drugs against STAT3 have been advanced to
clinical trials with two of them have passed phase III. Following the
lines across panels, she observes that the chemical structures of the
three drugs are not similar. In contrast, the two glyphs in the Chemistry
panel corresponding to the two drugs against KRAS that have been
advanced to clinical trials are close, implying that only one scaffold
was explored thoroughly. Comprehensively considering these factors,
Hannah finally selects KRAS as her future research direction.

Fig. 5. (a) The disclaimer; (b) An example of the tooltips shown in the
Chemistry panel. The paper shown in the tooltip is [53].

6 IMPLEMENTATION

MedChemLens has an interactive web interface built with React frame-
work. It is published on a web server so that users can easily retrieve
the website with a link and run it on their own laptops. After users input
a drug target, the tool will automatically extract and pre-process rele-
vant data and store it in a pre-cached memory for further visualization
use. In this section, we describe the system architecture (Fig.6) of Med-
ChemLens for extracting the information needed by medicinal chemists
in their drug target selection process and constructing visualizations.

6.1 Data Collection

First, to provide users with drug target properties, we collected the
image of the drug target structure from PDBe1 and signaling pathway
information from OmniPath database [49]. Then we automatically col-
lected the publications and experimental reports about the drug target.
Specifically, as suggested by the researchers (Section 3), we chose three
top journals of each discipline, that is: European Journal of Medicinal
Chemistry, Journal of Medicinal Chemistry, Drug Discovery Today for
chemistry; Nature Reviews Drug Discovery, Journal of Pharmacology
and Experimental Therapeutics, Advanced Drug Delivery Reviews for
pharmacology; the New England Journal of Medicine, the Lancet, the
Journal of the American Medical Association for clinical pharmacy. To
get the number of publications in each journal related to the inputted
target name, our program accessed the publisher site of the journal and
obtained the search results using the target name as the query string
and the journal name as the restriction. For example, the publisher
of European Journal of Medicinal Chemistry is ScienceDirect. Then
we used its official Search API2 to get the search results of the user
input target name. The number of publications per year about the drug
target in each discipline is counted by summing up the numbers of
publications per year in the three journals of that discipline. Accord-
ing to the interviews, medicinal chemists mainly focus on chemistry
articles. Therefore, we collected the full texts of the publications in
the three chemistry journals using DOIs of publications in the search
results. These full texts contain the metadata, structural information,
and main text of each publication. We wrote a script to automatically
discard the publications that did not propose new drug compounds (e.g.,
surveys) by checking whether the main text contains the names of the
molecular features and whether the graphical abstracts of the articles
contain chemical structures using ChemSchematicResolver [4].

Next, we extracted the number of all proposed drug compounds from
publications. We randomly sampled 50 medicinal chemistry articles
and checked with the researchers about some general writing patterns
in chemical publications. We found that the authors of the chemical
articles usually assigned IDs (e.g., “6”, “5b”) to all their proposed drug
compounds, and we identified the common patterns of the IDs. In this
way, we got the number of all new drug compounds the publication
proposed by counting the number of unique IDs that following the
naming pattern identified. If the core drug compound in a paper had
been advanced to clinical trials, it would be given a specific drug name
(e.g., “mZIENT”, “AZD9150”). In the same way we identified the
drug compound IDs, we extracted the drug name of the core drug
compound from chemical publications. Based on the extracted drug
names, we collected the information in the clinical pharmacy discipline
that medicinal chemists need about the clinical trials of the drugs using

1https://www.ebi.ac.
2https://dev.elsevier.com/text mining.html



Fig. 6. The system architecture and pipeline of MedChemLens (The graphic abstract image is from [21]).

the official API of ClinicalTrials.gov3.

6.2 Molecular Feature Extraction
We developed a pipeline to extract the molecular features. The pipeline
consists of two modules: an NLP (Natural Language Processing) mod-
ule and a revision module.

6.2.1 The NLP Module
Although molecular features are numerical values, their textual patterns
in publications may vary, and the features of core drug compounds
and derivative compounds are mixed, such as “Ki = 176 nM”, “...the
IC50 values for compounds 5a and 5b on EGFRT790M were 5.52 and
25.8 nM, respectively”. Thus, we used a NLP model, BERT [16], to
automatically extract molecular features of the core drug compound
from the textual contents of each publication. Two authors of this
paper annotated 528 papers and the data was randomly split into 90%
training set and 10% testing set [51, 55]. Before we passed the articles
into the model, we first pre-processed the documents to construct the
vocabulary and perform word-to-index mapping. The BERT model
achieved an accuracy of 93.9% on core drug compound ID identifica-
tion. However, it had a limited performance on the molecular features
with an accuracy of 66.6% on average. One reason for the relatively
low performance is that many molecular features are reported in tables
or figures resulting in the failure of data extraction from the textual
contents. Thus, we further proposed a revision module to revise and
complement the extraction results of the BERT module by extracting
the information from tables and figures in publications.

6.2.2 The Revision Module
We first validated the results of the NLP module by format checking.
Molecular features are numerical values and we have identified the
general patterns of the drug compound IDs (Section 6.1). Therefore, if
the core drug compound IDs or certain molecular features extracted by
the NLP module were empty or did not conform to those patterns, we
marked those extracted fields to be revised or filled.

Revision of drug compound ID We used EasyOCR4 to extract the
textual words and their positions in a graphic abstract and identified
drug compound IDs from the extracted text based on the patterns we
summarized. Nevertheless, many graphic abstracts may contain two or
more drug compound IDs. Based on our sampling and checking with
medicinal chemical researchers, we found that the core compound is
commonly at the rightmost position. Hence, if there were multiple drug
compound IDs in a graphic abstract, we utilized the absolute position
of each compound ID to retrieve the rightmost one.

Revision of molecular features Firstly, we extracted the values of
the molecular features reported in graphical abstracts using a similar
method to that of revising drug compound IDs. Then we extracted
the molecular features of the core drug compounds from tables in the
articles. Specifically, for each table in a publication, we first verified
whether it contained our identified core drug compound ID. If so, we
would locate the cell containing the value of the molecular feature by
identifying the row (or column) whose number corresponding to the

3https://clinicaltrials.gov
4https://github.com/JaidedAI/EasyOCR

drug compound ID and the column (or row) whose header is the name
of the expected molecular feature.

After executing the revision module, our pipeline finally reached an
accuracy score of 97.0% on drug compound ID extraction and 80.6%
on average on molecular feature extraction. We acknowledge that we
did not further evaluate the pipeline outside of our training data due to
the lack of publicly available large-scale labeled dataset. Our main goal
is to propose a basic method for automatically extracting molecular
features from chemical publications. Future work could fine-tune our
model based on their research data (e.g., publications and lab reports).
Also, to avoid the over-reliance on our system, we added disclaimers in
MedChemLens (Fig.5 (a)) to remind users that there may be inaccuracy
in the returned results because of technological limitations.

6.3 Chemical Structural Similarity Computation
We calculated the structural similarity between the core drug com-
pounds of each pair of publications based on the simplified molecular-
input line-entry system (SMILES) of the drug compounds, which is a
line notation for describing chemical structures in textual strings [56].
The chemical structures of the core drug compounds are generally
shown in the graphic abstracts of papers. Therefore, we first used
ChemSchematicResolver [4] to resolve the chemical structures in the
graphic abstracts to SMILES. Then using RDKit [35], we obtained
the extended connectivity fingerprint with bond diameter 4 (ECFP4),
which encodes the topological information of a chemical structure as a
fixed-length binary bit vector [45], of each core drug compound based
on its SMILES. Finally, we calculated the Tanimoto coefficient [37],
a similarity coefficient of two fingerprints, to represent the similarity
between two drug compounds.

6.4 Synthesis Route Length Calculation
To calculate the synthesis route length of the core drug compound in
each publication, we used the API of IBM RXN5 to predict the syn-
thesis routes based on the SMILES of the core drug compound. Since
each drug compound would have several different synthesis routes, we
defined its synthesis route length as the length of the shortest synthesis
route with higher than 90% confidence that starts from commercially
available chemical entities.

7 USER STUDY

We conducted a within-subjects study with 16 participants to evaluate
the effectiveness of our proposed system, MedChemLens. According
to the interviews with the medicinal chemical researchers (Section 3),
online search, which is a common practice in drug target selection, is
used as the baseline in the control condition.

7.1 Participants
We recruited 16 participants (8 males, 7 females, and 1 prefer not to say;
age range 22-31) through online advertising and word-of-mouth. Two
of them are postdocs who had more than eight years of medicinal chem-
istry studying experience and had multiple top research publications.
They also had experience working in company labs. Two participants

5https://rxn.res.ibm.com



had PhD degrees and had more than five years of research experience.
Seven participants had between two to five years of experience, and
the remaining five had only one year of experience. Participants self-
reported their familiarity with drug targets about cancer and central
nervous system (CNS) disease. 10 participants reported themselves as
novices (N), four as knowledgeable (K), and two as experts (E).

7.2 Procedure
We designed two drug target selection tasks, both of which are repre-
sentative in current medicinal chemistry research and have a similar
size of related publications in our experiments:

1. T1: Rank five drug targets for cancer – EGFR, HER2, ALK,
KRAS, STAT3, based on how much the participant would like to
choose the target as their research direction.

2. T2: Rank five drug targets for CNS diseases – Amyloid-beta
precursor protein (APP), Catechol-O-methyltransferase (COMT),
Dopamine transporter (DAT), Monoamine oxidase B (MAO-B),
and Serotonin transporter (SERT), based on how much the partic-
ipant would like to choose the target as their research direction.

Each participant was invited to complete the two tasks separately
in the control and experiment conditions. In the control condition,
participants were allowed to use any search engines they usually use
in their routine practices, e.g., pubChem [31], Google Scholar, to find
any online resources. In the experiment condition, participants were al-
lowed to use MedChemLens only. Before the task with MedChemLens,
participants were asked to spend 5 minutes familiarizing themselves
with the tool. We counterbalanced the task assignment and the order
of the two conditions to minimize the potential order effect. Each
participant was given 60 minutes for each task. They were encour-
aged to think aloud during these two sessions, and we recorded each
session with participants’ permission. After each task, we asked the
participants to write down their reasons for the final ranking and fill
out a questionnaire (please see the supplementary material) to rate their
experience on a 7-point Likert scale. To better understand participants’
ratings and behavior, we further conducted a semi-structured interview
with them upon the completion of the two sessions.

8 RESULTS

In this section, we summarize quantitative results on participants’ per-
formance, user confidence and cognitive load, and qualitative feedback
from the user study.

8.1 User Performance
To investigate how well MedChemLens helps users select drug targets,
we statistically analyzed the participants’ performance of the target
selection tasks in the user study. We measured the user performance
using task completion time, the number of publications each participant
inspects, and the quality of their final selections.

Completion time We conducted a paired samples t-test to compare
users’ task completion time as we found the completion time followed
the normal distribution, in both control and experimental conditions.
Compared with using online search (47.37, [41.64, 53.10] 95% CI),
participants using MedChemLens (34.35, [27.71, 40.99] 95% CI) spent
significantly less time (t = 5.52, d f = 15, p < .01) completing the
target selection task.

Number of publications each participant inspects To assess the
effectiveness of our system in helping users filter desired information,
we counted the number of publications each participant inspected in
each task. As a Shapiro-Wilk test showed a significant departure from
the normal distribution for MedChemLens (W (16) = .83, p = .006),
we conducted a Wilcoxon signed-rank test to compare the number of
publications each participant inspected in both control and experiment
conditions. The results show that participants using MedChemLens
(6.69, [3.11, 10.27] 95% CI) clicked on significantly fewer articles for a
detailed read (Z =−2.14, p < .05) than when they used online search
(11.00, [7.66, 14.34] 95% CI). To figure out whether MedChemLens
indeed saves users’ efforts in screening relevant publications, we further

Fig. 7. Means and standard errors of the participants’ confidence in their
selections (left) and cognitive load in drug target selection process (right)
on a 7-point Likert scale (*: p < .05, **: p < .01)

.
interviewed the participants to understand their intent when opening
certain papers. Five participants said that they opened some papers with
online search, but found the papers not related to what they wanted after
reading the paper for a while. In contrast, when using MedChemLens,
participants could easily narrow down to their desired papers via various
filtering mechanisms. P4 (M, 30, E) explained, “I can easily find
articles I need, such as the ones on the core of clusters [in Chemistry
Panel] that proposed representative drug compounds, and the ones
whose proposed compounds have been advanced to clinical trials”.

Final selections To investigate the effectiveness of MedChemLens
on supporting drug target selection, we invited two experts who have
more than 10 years of medicinal chemistry research experience to eval-
uate participants’ final decisions (i.e., the rankings of the given drug
targets). After discussing with the experts, we selected rationality and
comprehensiveness as measures to evaluate whether the participants’
final decisions were rational and whether they examined the targets com-
prehensively. Specifically, we provided each participant’s final rankings
and the corresponding justifications to experts and asked them to rate
participants’ final decisions in terms of rationality and comprehensive-
ness on a 7-point (1 – not rational/comprehensive at all, 7 - extremely
rational/comprehensive) Likert scale. Both experts were blind to the
study condition, and the order of the participant results was randomized.
We analyzed the experts’ ratings using Wilcoxon signed-rank tests. The
results show that participants’ final decisions were perceived by experts
to be significantly more rational (Z =−2.47, p < .05) and comprehen-
sive (Z =−2.13, p < .05) in the MedChemLens condition (rationality:
4.28, [3.80, 4.76] 95% CI; comprehensiveness: 4.59, [4.21, 4.97] 95%
CI) than in the online search condition (rationality: 3.34, [2.83, 3.86]
95% CI; comprehensiveness: 3.91, [3.40, 4.41] 95% CI), which indi-
cates that MedChemLens helped users make better-informed choices.
We acknowledge that experts’ ratings may be subjective and biased.
To minimize such effects, we asked the experts to rate participants’
final decisions following the common criteria in the field of medicinal
chemistry and based on whether the participants considered aspects
comprehensively and made correct decisions accordingly instead of
comparing the participants’ rankings with theirs.

8.2 User Confidence and Cognitive Load

To examine users’ experience of the drug target selection process, we
conducted statistical analysis on participants’ ratings in the post-study
survey about their confidence in the final selections and their cognitive
load of completing the target selection tasks.

As shown in Fig.7, participants reported to be significantly more
confident (Wilcoxon signed-rank test: Z = −2.43, p < .05) in their
final selections using MedChemLens than searching online themselves.
This result is mainly because participants thought that they were able
to investigate each target more sufficiently and therefore gained more
comprehensive insight regarding each target with the assistance of Med-
ChemLens (P12, F, 24, K). Thematic analysis on users’ target selection
process and the justifications for their selections also reveal that in the
online search condition, 12 participants overlooked several aspects (e.g.,
research popularity), of which the importance was emphasized by them
in the MedChemLens condition. In addition, 11 participants, especially
self-reported novices, stated that they had more control of their target
selection process with MedChemLens. For example, P2 (M, 27, N)
complained that he did not know where to start when facing thousands
of search results in the online search condition. P11 (M, 22, N) added,

“The information I got through online search is not systematic, and I do



not know where this information lies in the big picture of the research
about that drug target. In contrast, I know how much I have understood
about the drug target when using MedChemLens”.

Using Wilcoxon signed-rank tests, we analyzed participants’ cog-
nitive load of drug target selection in the online search condition and
MedChemLens condition based on their ratings. The results (Fig.7)
show that MedChemLens significantly reduced users’ cognitive load in
all related dimensions. This result indicates that MedChemLens did not
overwhelm users while assisting users in processing more information.

8.3 Qualitative Feedback
In general, most participants showed positive responses to the usability
(M = 5.75, SD = 1.13) and usefulness (M = 5.75, SD = 1.13) of Med-
ChemLens. To further understand the reasons behind the scores, two
authors of this paper conducted a thematic analysis on the transcripts
of the post-study interview.

8.3.1 Intuitive, Systematic and Time-saving System
All participants regarded the system as “intuitive”, “systematic” and
“time-saving”. Five participants thought the Signaling Pathway view
was one of the most helpful views. For example, when using online
search, P2 (M, 27, N) got confused as an article reported the proper-
ties of drug compounds against not only the candidate target but also
some downstream targets that he did not know. In contrast, he said
the Signaling Pathway view showed him why publications included
other targets in addition to the candidate targets. Another benefit of
MedChemLens is that it provides a holistic picture of the existing work
about each drug target and helps users intuitively compare them. In
general, participants believed that they could easily know which targets
attract more research (13/16), against which targets some drugs passed
clinical trials (12/16), and whether most publications designed drug
compounds based on similar scaffolds or based on different scaffolds
(7/16). Additionally, four participants commented on the convenience
of interactions. For instance, P4 (M, 30, E) said, “it is helpful to allow
me to drag similar targets together and compare them”.

8.3.2 Inspiration and Insightfulness
The system was considered “inspiring” and “insightful”. In general,
participants were excited about MedChemLens as it not only shows
what has been done but also uncovers potential opportunities as to
what can be done in future research. Six participants reported that
they gained insights from Overview about what molecular features of
drug compounds could be further improved. Interestingly, we found
that participants who explored the Detail View starting from different
panels might get different insights. More specifically, 12 participants
began with the Chemistry panel and easily found the papers at the
center of the research clusters that proposed classical drug compound
structures. Two participants began with the Pharmacology panel and
used the sorting function to locate the papers whose corresponding
drug compounds performed best on pharmacological features. Other
participants began with the Clinical Pharmacy panel and went back to
the Chemistry panel following the lines across the panels to find the
druggable chemical structures. Moreover, P14 (M, 22, N) pointed out
that he got useful information that he never realized that he needed
to know. He explained, “In the past, I mainly focused on the papers
that proposed representative molecules. Now the Chemistry panel
reminds me of the papers that are the outliers of the clusters. The
chemical structures in the outlier papers seem to be more creative and
may have greater research potential”. Eight participants commented
that MedChemLens helped them evaluate the possible ‘benefits’ and
‘risks’ of choosing the targets. For example, P2 (M, 27, N) said “some
papers focus on designing drugs against this target [KRAS], but no
drug compounds have passed the clinical trials. There seems to be an
opportunity to make breakthroughs if I choose to study this target, but
it might be too risky for me as a novice [researcher]”.

8.3.3 Adaption of Workflows
From the user study, we observed that participants would adapt their
own workflows to the capabilities of MedChemLens. Most participants

(14/16) stated that they would prefer beginning with MedChemLens to
make decisions since it allows them to quickly get a general picture of
the drug target and navigate to specific areas of interest for a focused
analysis. The other two participants would like to first search online for
general information (e.g., latest news) about the drug targets to gain an
initial understanding and then use MedChemLens to explore the schol-
arly documentations about the targets. Interestingly, four participants
proposed that MedChemLens may support their other research tasks
in addition to drug target selection. For example, P2 (M, 27, N) said

“sometimes my professor would directly tell me that a certain molecular
feature of drug compounds against a certain target may need to be
further improved. Then MedChemLens could help me check whether
the feature indeed could be improved and help me filter related papers
to analyze how to accomplish it”.

9 DISCUSSION

Generalizability Although our system is domain-specific, our visual
design and pipeline could be easily extended to other interdisciplinary
experimental science fields (e.g., biomedicine). In these areas, re-
searchers always need to collect and integrate information from multi-
ple areas. Our molecular feature extraction pipeline could be adapted to
help extract other types of textual, numerical, and/or visual information
from related publications and be adjusted based on the characteristics
of the disciplines. The components of our pipeline could be made into
individual modules for users to plug-and-play and customize easily.
For instance, if key features are reported in tables in publications, the
part of the pipeline that processes tables can be applied. In addition,
the idea behind the Chemistry panel of organizing publications around
figures could be applicable to other disciplines that rely on images to
showcase their contributions, such as data visualization.

Lessons learned. We learned several practical lessons for visual-
ization research during our system design and evaluation. 1) Choose
the data organization method that best fits the field. We organized
chemical articles based on their proposed chemical structures in our
system. Researchers confirmed that such design matches their intuition
well and helps them gain quick insights into the research landscapes of
drug targets and the relations between the papers. 2) Provide flexibility
by customizing configurations. We found that the decision-making
strategies vary across researchers. Thus, it is important to allow users to
adjust the organization methods of visual information as needed. For ex-
ample, in our user study, participants thought that dragging drug targets
with their related information was helpful for the target comparison.

Limitations First, we only focused on three top journals of each dis-
cipline as a proof of concept, and the set of molecular features presented
in our system may be incomplete. Second, we did not evaluate our
pipeline outside of the training data. The imperfection of the pipeline
may affect the effectiveness of MedChemLens. Third, as medicinal
chemistry research often takes many years [57], within the scope of
our study, we could not examine users’ satisfaction with their decisions
after they researched into their selected drug targets for a long time.

10 CONCLUSION

In this paper, we presented MedChemLens, an interactive visual tool to
support medicinal chemists in selecting drug targets. MedChemLens
integrates information from three disciplines (i.e., chemistry, pharma-
cology, clinical pharmacy) and organizes scholarly documentations
following the practice of each individual discipline. Also, MedChem-
Lens captures and visualizes factors implying the possible difficulty
of experiments. Through a within-subjects study, we demonstrated
the effectiveness of MedChemLens in helping users analyze relevant
literature and experimental data to select research directions.
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