
Searching Effective Transformer for
Seq2Seq Keyphrase Generation

Yige Xu, Yichao Luo, Yicheng Zhou, Zhengyan Li, Qi Zhang, Xipeng Qiu(B),
and Xuanjing Huang

School of Computer Science, Fudan University, Shanghai, China
{ygxu18,ycluo18,yczou18,lzy19,qz,xpqiu,xjhuang}@fudan.edu.cn

Abstract. Keyphrase Generation (KG) aims to generate a set of
keyphrases to represent the topic information of a given document, which
is a worthy task of Natural Language Processing (NLP). Recently, the
Transformer structure with fully-connected self-attention blocks has been
widely used in many NLP tasks due to its advantage of parallelism
and global context modeling. However, in KG tasks, Transformer-based
models can hardly beat the recurrent-based models. Our observations
also confirm this phenomenon. Based on our observations, we state the
Information Sparsity Hypothesis to explain why Transformer-based mod-
els perform poorly in KG tasks. In this paper, we conducted exhaustive
experiments to confirm our hypothesis, and search for an effective Trans-
former model for keyphrase generation. Comprehensive experiments on
multiple KG benchmarks showed that: (1) In KG tasks, uninformative
content abounds in documents while salient information is diluted glob-
ally. (2) The vanilla Transformer equipped with a fully-connected self-
attention mechanism may overlook the local context, leading to perfor-
mance degradation. (3) We add constraints to the self-attention mecha-
nism and introduce direction information to improve the vanilla Trans-
former model, which achieves state-of-the-art performance on KG bench-
marks.

Keywords: Keyphrase Generation · Transformer · Seq2Seq

1 Introduction

Keyphrase Generation (KG) is a classic and challenging task in Natural Lan-
guage Processing (NLP) that aims at predicting a set of keyphrases for the given
document. As keyphrases contain the core idea of the document, it is useful in
various downstream tasks such as information retrieval [13], document cluster-
ing [12], opinion mining [2,28], and text summarization [27]. In most cases,
keyphrases can be found in the given document, which means it is a substring
of the source text (aka present keyphrases). In other challenging cases, some

Y. Xu and Y. Luo—Contribute equally.

c© Springer Nature Switzerland AG 2021
L. Wang et al. (Eds.): NLPCC 2021, LNAI 13029, pp. 86–97, 2021.
https://doi.org/10.1007/978-3-030-88483-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88483-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-88483-3_7

Searching Effective Transformer for Seq2Seq Keyphrase Generation 87

Table 1. Sample document with keyphrase labels. In this example, there are some
present keyphrases (in red color) and some absent keyphrases (in blue color).

Document: Rental software valuation in it investment decisions. The growth of

application service providers (asps) is very rapid, leading to a number of options to organizations

interested in developing new information technology services. ... Some of the more common

capital budgeting models may not be appropriate in this volatile marketplace. However, option

models allow for many of the quirks to be considered. ...

Keyphrase labels: (present keyphrases) application service providers; options; capital budgeting;

(absent keyphrases) information technology investment; stochastic processes; risk analysis

keyphrases may not appear in the given document (aka absent keyphrases). An
examplar document along with the reference keyphrases can be found in Table 1.

In recent years, Transformer [25] has become prevailing in various NLP
tasks, such as machine translation [25], summarization [19], language model-
ing [6], and pre-trained models [7]. Compared to recurrent-based models, such
as GRU [5] and LSTM [10], the Transformer module introduces fully-connected
self-attention blocks to incorporate global contextual information and capture
the long-range semantic dependency [18]. Meanwhile, Transformer has a better
parallelism ability than RNN due to the module structure.

However, the vanilla Transformer has a poor performance in the KG task,
and can hardly beat the approaches based on RNN [4,21]. We carefully tuned
Transformer models on the KG task, and our observations have confirmed this
conclusion. Since Transformer-based models have been proved their success in
many other NLP tasks in recent years [18], it is worth exploring why Transformer
performs poorly in the KG task.

Considering the example shown in Table 1, the keyphrase “application ser-
vice providers” is mentioned in the sentence “The growth of application service
providers...”, which may not have a close relationship with the other sentences
in the example document. The RNN captures features by modeling the text
sequence [10], and the Transformer focus more on the global context model-
ing [25]. Based on the module architecture and previous observations, we state
the Information Sparsity Hypothesis: In KG tasks, uninformative content
abounds in documents while salient information is diluted in the global context.

For a vanilla Transformer encoder, every two tokens from different segments
can be attended by each other, while it may probably bring uninformative con-
tent to each other. Based on the property of Transformer and our hypothesis,
we introduce two adaptations towards the objective Transformer encoder.

The first adaptation is to reduce the context that can be attended by the self-
attention mechanism. To analyze the influence of the attention mechanism, we
firstly manually separate the input sequence into several segments while tokens
from different segments cannot be attended by each other. Experiments show
that this modification leads to a slight improvement. Thus, we further add some
constraints on the attention mechanism by sparsing the attention mask matrix.

The second adaptation is introducing direction information. Typically, pre-
vious models usually use BiRNN as encoder and decoder, distinguishing which
side the context information comes from. But the vanilla Transformer only uses

88 Y. Xu et al.

a position embedding to distinguish tokens from different positions, which does
not significantly contain direction information. Thus, Transformer-based model
is usually unaware of the distance between different tokens. However, it is more
important to model the relationship between tokens and their neighbors in the
KG task, which mainly decides they should be or should not be part of the
keyphrase. Following [24] and [6], we employ relative multi-head attention to
the KG task. Our experiment shows that relative multi-head attention can bring
improvement than multi-head attention.

Our main observations are summarized in: (1) The most informative content
usually comes from its neighborhood tokens, which provide empirical evidence
to our proposed Information Sparsity Hypothesis. (2) Due to this phenomenon,
we confirm that Transformer performs poorly in KG tasks because the fully-
connected self-attention mechanism on vanilla may overlook the local context. (3)
We adapt Transformer module by reducing attention to uninformative content
and adding direction information. Our proposed model achieves state-of-the-art
results on present keyphrase generation.

2 Methodology

2.1 Reduce Attention to Uninformative Content

As mentioned in Sect. 1, we try to use Information Sparsity Hypothesis to explain
why Transformer does not work on KG tasks. In RNN models, the attention
mechanism mainly focuses on target keyphrase tokens. In Transformer models,
the attention distribution is more sparse and tend to receive more information
from different tokens. Hence, reducing attention to uninformative content is a
considerable solution. In this section, we will introduce two methods to constraint
the attention mechanism: mandatory prohibition, and soft prohibition.

Segmentation. Considering a an input sequence x = [x1, x2, . . . , xlx], token
x1 and xlx can be attended by each other due to the self-attention mechanism.
For convenience, firstly we manually separate the input sequence x into several
segments, for example, x = [x̂1, . . . , x̂K]:

x̂i = [xN ·(i−1)+1, xN ·(i−1)+2, . . . , xN ·i], (1)

ĥi = Transformer(x̂i), (2)

H = concat[ĥ1; ĥ2; . . . ; ĥK], (3)

where K denotes the number of segments, and N denotes the sequence length of
each segment. The attention between tokens from different segments are prohibit.

Sparsing the Matrix of Attention Mask. In addition to the approaches
mentioned above, another efficient way to reduce attention to uninformative
content is by adding constraints to the attention mask. If the input sequence x
has a sequence length of n, the attention mask matrix M ∈ {0, 1}n×n is:

Searching Effective Transformer for Seq2Seq Keyphrase Generation 89

Mi,j =
{

0, if xi does not attends xj

1, if xi attends xj
, (4)

In general, the attention mechanism is fully-connected, which means any two
tokens xi and xj can be attended by each other. Thus, the attention mask in
the vanilla Transformer encoder is a matrix filled with one: Mfull = 1n×n.

However, based on our Information Sparsity Hypothesis, a given token xi

does not need to attend the uninformative tokens. Typically, the informative
tokens usually come from three parts, including lead tokens that contain the core
topic of the whole document, neighborhood tokens that contain the contextual
information, and tokens with high attention scores that is highly revalent to xi.

For attending lead tokens, the lead g tokens are selected to the interaction,
so that the attention mask matrix can be formula as:

Mlead
i,j =

{
1, if i ≤ g or j ≤ g
0, if i > g and j > g

, (5)

For neighborhood attention, each token xi can mostly attend w tokens, which
includes its previous �w

2 � tokens and its next �w
2 � tokens:

Mneigh
i,j =

{
1, if |i − j| ≤ �w

2 �
0, if |i − j| > �w

2 � , (6)

For highly relationship attention, we firstly compute the attention score
matrix and then select top k tokens to attend:

Mtopk
i ∈ [0, 1]n, where

n∑
j=1

Mtopk
i,j = k (7)

Similar to BigBird [32], the attention mask matrices can be mixed up by:

M̄i,j = (αMlead
i,j) ◦ (βMneigh

i,j) ◦ (γMtopk
i,j). (8)

where α, β, γ are hyperparameters in {0, 1} to control which attention mask will
be used and which will not, and ◦ means element-wised “or” operation.

2.2 Relative Multi-head Attention

Inspired by the success of reducing attention to uninformative content, we further
consider what else properties the Transformer lacks compared to RNN-based
models. One empirical observation is that Transformer is not sensitive to the
direction information because Transformer is not easy to distinguish whether the
context comes from the left side or the right side. Hence, following the successful
experience in Named Entity Recognition (NER) task [30], we introduce relative
multi-head attention to improve our model. The relative multi-head attention

90 Y. Xu et al.

Table 2. Summary statistics of four scientific article benchmark.

Dataset #Train #Validation #Test #Avg. present #Avg. absent

Inspec – 1,500 500 7.64 2.10

Krapivin – 1,903 400 3.27 2.57

SemEval – 144 100 6.28 8.12

KP20k 509,818 20,000 20,000 3.32 1.93

uses a relative positional encoder Ri−j to replace the position encoding Pj in
the vanilla self-attention mechanism [6,30], which can be formula as:

Aabs
i,j = QiK

T
j = HiWq(HjWk)

T + HiWq(Ri−jWk)
T (9)

+ u(HjWk)
T + v(Ri−jWk)

T
.

where R is a not learnable sinusoid encoding matrix [25], u and v are two
learnable parameters used to substitute the position-based query terms.

3 Experiment Settings

3.1 Notations and Problem Definition

In this paper, we use bold lowercase and uppercase letters to denote vectors and
matrices, respectively. We use calligraphy letters to indicate the sets and W to
represent a parameter matrix. Given an input document x, the KG task aims
to generate a set of ground-truth keyphrases Y = {y1,y2, . . . ,y|Y|}, where |Y|
indicates the keyphrase number of x. Both the source document x = [x1, . . . , xlx]
and each target keyphrase yi = [yi

1, . . . , y
i
lyi

] are word sequences, where lx and
lyi

indicates the word numbers of x and yi respectively.

3.2 Datasets

To verify and analyze the information sparsity hypothesis, we conduct experi-
ments on four public datasets: Inspec [11], Krapivin [16], SemEval-2010 [14],
KP20k [21]. Documents from these four benchmarks are all scientific articles.
In Table 2, we describe the detailed statistics of each dataset. Following [4,31],
an article with title and abstract are included as the source data and a set of
Keyphrases are included as the target data.

3.3 Evaluation Metrics

We use F1@5 and F1@M as evaluation metric, which is the same as [4]. As for
F1@5, we cut off the top 5 keyphrases for calculating. When the number of pre-
dicted keyphrases is less than 5, we randomly append incorrect keyphrases until

Searching Effective Transformer for Seq2Seq Keyphrase Generation 91

it obtains 5 keyphrases. Unlike F1@5 that using a fixed number for predictions,
F1@M [31] compares all predictions with target keyphrases. Therefore, the effect
of the evaluation metric caused by the different number of predictions should be
considered. In this paper, we use the macro F1@M and F1@5 scores to report
results. Before calculating the scores, we should stem all keyphrases and remove
all duplicated keyphrases.

3.4 Implementation Details

Following previous work [4,21,31], for data preprocessing, we lowercase the char-
acters, tokenize the sequences and replace the digits into “〈digit〉” token. For the
training stage, we use the source code from [4]. When training, we sort the present
keyphrase targets in the order of their first occurrences. The absent keyphrase
targets are then appended at the end of ordered present targets. We use a pre-
processed vocabulary with 50,000 tokens, which is shared between the encoder
and decoder. For RNN models, the dimension of encoder and decoder are kept as
300, and we use a 2-layer encoder and 1-layer decoder. For Transformer models,
we carefully tuned the hyperparameters. All learnable parameters are randomly
initialized by a uniform distribution in [−0.1, 0.1] before the training stage. Due
to the average length of about 180 tokens, it requires high GPU memory in
Transformer models. Thus we set the batch size as 16 or 24. Following [4], we
set the max gradient norm as 1.0 and the initial learning rate as 1e− 3 for RNN
models and 1e − 4 for Transformer models, and remove the dropout. During the
training stage, we use Adam as the optimizer. We save checkpoints every 5,000
steps for evaluation.

4 Results and Discussions

4.1 Applying Transformer to Keyphrase Generation

Table 3. Present keyphrase prediction results of different standard encoders.

Model Inspec Krapivin SemEval KP20k

F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

ExHiRD-h [4] 0.291 0.253 0.347 0.286 0.335 0.284 0.374 0.311

ExHiRD-h (Our implementation)

w/BiGRU encoder 0.288 0.248 0.344 0.281 0.326 0.274 0.374 0.311

w/BiLSTM encoder 0.285 0.245 0.346 0.278 0.328 0.278 0.374 0.311

w/CNN encoder 0.284 0.247 0.347 0.277 0.324 0.269 0.371 0.306

w/Transformer encoder 0.267 0.240 0.325 0.271 0.304 0.258 0.355 0.299

Typically, previous model applied BiGRU on both encoder and decoders. Thus,
we firstly replace the BiGRU encoder with other widely-used components: BiL-
STM, CNN, and Transformer. The results are shown in Table 3. Our observation

92 Y. Xu et al.

confirms that Transformer encoder can hardly beat the recurrent-based models,
while CNN encoder has comparable performance.

In this experiment, we note that the accurate of absent keyphrase generation
is very poor. On KP20k, only about 1,000 absent keyphrases are correctly pre-
dicted, and the ground truth contains 38,531 keyphrases. The score on absent
keyphrase prediction is not only inadequate but also in a high variance. We
hypothesis that there are two main reasons: (1) the average number of keyphrases
in each document is limited (mainly about 3 keyphrases), thus it is not easy to
predict the correct results; (2) the evaluation metric is strict that only the accu-
rate predictions are counted. Due to this reason, we mainly focus on present
keyphrase generation in the following experiments.

4.2 Tuning Transformer Model

As shown in Sect. 4.1 and [4], Transformer performs poorly in the KG tasks.
However, tuning Transformer with different hyperparameters affects the perfor-
mance. Therefore, in this section, we will carefully fine-tune the Transformer
model with different hyperparameters.

Table 4. Present keyphrase prediction results of different encoder-decoder pairs on
KP20k. “#C@M” and “#C@5” indicates the number of correctly predictions in F1@M
and F1@5, respectively. “#Avg. Len” is the average number of predictions to present
keyphrases. “TF” is standard Transformer module.

Encoder Decoder F1@M F1@5 #C@M #C@5 #Avg. Len

BiGRU BiGRU 0.374 0.311 25,275 24,435 3.88

BiGRU TF 0.372 0.298 24,252 23,603 3.84

TF BiGRU 0.363 0.290 23,337 22,933 3.81

TF TF 0.359 0.290 22,912 23,314 3.69

Effective of Different Encoder-Decoder Pairs. As shown in Table 4, we
firstly explore the effectiveness of different encoder-decoder pairs in this section.
According to our experiment, the F1@M score drops significantly if we use a
standard Transformer encoder to replace the BiGRU encoder. Meanwhile, our
experiment shows that the F1@M score will also obtain a slight change when
we use a standard Transformer decoder to replace the BiGRU decoder.

In our experiments, we notice that the average length of target present
keyphrases is 3.32, but models usually predict more than 3.5 keyphrases on
average. We will randomly append keyphrases until there are five predicted
keyphrases when we compute the F1@5 score. Due to this reason, predicting
more keyphrases tend to improve the F1@5 score because a maybe-incorrect
prediction is better than an absolutely-incorrect prediction. In contrast, when
computing the F1@M score, a maybe-incorrect keyphrase is worse than predict-
ing nothing because the overall accuracy is at a low level from about 0.3 to about

Searching Effective Transformer for Seq2Seq Keyphrase Generation 93

0.4. The average number of predicted keyphrases is also an important indirect
factor for evaluating the ability of keyphrase generation. Hence, we will have a
joint consideration between the F1@5 score and the F1@M score for comparison
in the following experiments.

Table 5. Present keyphrase results of different hyperparameters on KP20k.

<η, N, A, H> F1@M F1@5 #Avg. Len

<1e − 3, 2, 6, 300> 0.348 0.278 3.57

<1e − 4, 2, 6, 300> 0.359 0.290 3.69

<1e − 4, 3, 6, 300> 0.359 0.284 3.86

<1e − 4, 3, 8, 512> 0.362 0.299 3.89

<1e − 4, 4, 6, 300> 0.363 0.296 3.83

<1e − 4, 4, 8, 512> 0.364 0.300 3.96

<1e − 4, 6, 12, 768> 0.364 0.304 4.15

<1e − 4, 12, 12, 768> 0.361 0.293 3.77

Tuning Transformer Model with Different Hyperparameters. As men-
tioned in Sect. 4.2, Transformer encoder performs poorly in KP20k with general
hyperparameters. Thus, we will carefully tune the Transformer models with dif-
ferent hyperparameters. The results are shown in Table 5. We mainly tuned four
hyperparameters: learning rate η, number of layers N , number of attention heads
A, and hidden size H. Though the hidden size of 300 is usually set in RNN-based
models, it is not suitable in Transformer-based models. Meanwhile, more atten-
tion heads and layers are required. However, when we stack more layers (e.g.,
N = 12) into our model, we find that: (1) The training stage has become more
difficult that obtains a slower convergence; (2) The validation score as well as
test evaluation score are lower than a 6-layer or a 4-layer Transformer model.
Thus, we set N = 4 or N = 6 in the following experiments.

4.3 Adapting Transformer to Keyphrase Generation

As shown in Sect. 4.2, we confirm that Transformer performs poorly in KG tasks.
Therefore, we apply the methods shown in Sect. 2.

Reduce Attention to Uninformative Content. As shown in Table 6, chunk-
ing brings slight improvement on the KG task. It is worth noting that N = 250
and N = 500 have a similar result to not applying the chunking because the
average length of the training set is about 180 tokens.

94 Y. Xu et al.

Table 6. Effects of segment length N on present keyphrase prediction on KP20k.
N = 0 means do not apply segmentation.

N 0 25 50 100 250 500

F1@M 0.364 0.366 0.368 0.362 0.363 0.362

F1@5 0.300 0.303 0.304 0.297 0.298 0.297

#Avg. Len 3.96 4.05 4.00 3.96 3.92 3.92

Table 7. Statistics of present keyphrases predictions with different attention mask
matrices. α, β, and γ indicates hyperparameters defined in Eq. (8). “baseline” indicates
standard Transformer with attention mask Mfull.

Layer α β γ F1@M F1@5 C@M C@5 #Avg. Len

4 Baseline 0.364 0.300 24,154 23,827 3.96

4 1 1 1 0.372 0.304 24,812 24,042 3.85

0 0.367 0.302 24,905 23,929 3.95

0 0.363 0.298 25,051 23,662 4.05

0 0.370 0.298 24,315 23,632 3.73

6 1 1 1 0.372 0.304 24,562 23,979 3.82

0 0.364 0.306 25,112 24,208 4.13

0 0.366 0.296 24,177 23,347 3.90

0 0.368 0.302 24,468 23,770 3.87

Typically, the mandatory prohibition promotes the encoder to focus more on
modeling tokens within the same segment while forcibly prohibiting attending
tokens from other segments containing uninformative noises. In contrast to this,
a CNN model mainly captures features from the local context due to spatial
convolutional mechanism, while a RNN model models the input sequentially.
Moreover, previous work [8,15] has shown that in RNN models each token can
only perceive approximately 50 to 100 tokens before it. In summary, this obser-
vation also provides empirical evidence to the information sparsity hypothesis.

As shown in Table 7, sparsing the attention mask matrix can boost the per-
formance compared to a standard Transformer with a Mfull attention mask.
Compared to Mfull, attention with mask matrix M̄ can not only predict more
correct keyphrases but also predict fewer keyphrases on average.

According to our ablation experiments, we found that the evaluation score
drops the least when α = 0, leading tokens containing the least important infor-
mation among three types of tokens. Meanwhile, prohibiting the neighborhood
tokens will lead to a significant drop, which shows that the most informative con-
tent usually comes from neighborhood tokens. This observation provides empir-
ical evidence that enhancing the ability to capture local information can make
Transformer performs better on KG tasks.

Searching Effective Transformer for Seq2Seq Keyphrase Generation 95

Table 8. Comparison of present keyphrase prediction results. “SM” indicates sparsing
the mask matrix of self-attention, and “RMHA” indicates using relative multi-head
attention. We bold the best result.

Model Inspec Krapivin SemEval KP20k

F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq [31] 0.276 0.233 0.344 0.269 0.313 0.262 0.368 0.295

ExHiRD [4] 0.291 0.253 0.347 0.286 0.335 0.284 0.374 0.311

ExHiRD with RNN (our implementation) 0.288 0.248 0.344 0.281 0.326 0.274 0.374 0.311

(Ours) ExHiRD with TF 0.278 0.232 0.329 0.272 0.310 0.258 0.364 0.300

+ SM only 0.280 0.235 0.334 0.275 0.319 0.266 0.372 0.304

+ RMHA only 0.289 0.244 0.336 0.277 0.325 0.278 0.372 0.313

+ SM + RMHA 0.293 0.254 0.351 0.286 0.337 0.289 0.375 0.316

Applying Relative Multi-head Attention. As shown in Table 8, applying
relative multi-head attention can improve the performance of Transformer mod-
els. Meanwhile, it also shows that our model with a sparse self-attention mask
matrix can be further improved by applying relative multi-head attention.

4.4 Observations and Findings

In summary of our experiment results, we have four main findings: (1) Our exper-
iments have confirmed that the vanilla Transformer encoder-decoder model can
hardly beat the recurrent-based models. (2) In KG tasks, the most informative
content usually neither comes from leading tokens nor comes from tokens with
the highest attention score, but comes from neighborhood tokens. (3) In KG
tasks, direction information is also important, which is not significantly in the
position embedding. We boost our model with relative multi-head attention. (4)
Our experiments provide empirical evidence to our information sparsity hypoth-
esis. Our hypothesis also encourages the adaptation of Transformer models to
achieve SOTA results.

5 Related Work

Keyphrases are short phrases that contain the core information summarized
from the given document. Traditional extractive approaches [22,29] aim to select
salience phrase presents in a document. The existing methods generally adopt
two steps. First, the identify keyphrase candidates are extracted by heuris-
tic methods [17]. Afterward, the candidates are ranked by either unsupervised
methods [26] or supervised learning techniques [11,23]. In order to generate
both present and absent keyphrase for a document, [21] introduced CopyRNN,
which consists of an attentional encoder-decoder model [1] and a copy mecha-
nism [9]. CopyRNN and its variants use the beam search to generate a fixed-
size keyphrase. [31] introduced a new Seq2Seq model that predicts multiple
keyphrases for the given document, which enable a generative model to generate
variable numbers of keyphrases. Lately, [3,20] proposed reinforcement learning

96 Y. Xu et al.

based fine-tuning method for generating both sufficient and accurate keyphrases.
Furthermore, [4] proposes an exclusive hierarchical decoding framework to avoid
repeated keyphrases and enhance the diversity of the generated keyphrases.

6 Conclusion

In this paper, we confirm the poorly performance Transformer models have in KG
tasks and seek to explore the reason. We state the Information Sparsity Hypoth-
esis and conduct experiments to confirm our hypothesis. Based on our hypothe-
sis, we adapt the Transformer model by sparsing the attention mask matrix and
introducing relative multi-head attention, which achieves SOTA results on KG
benchmarks. Ablation study also proves that in KG task the most informative
content usually comes from neighborhood tokens. Our detailed observations also
provide more hints for the follow-up researchers to understand the Transformer
architecture and design more powerful models.

Acknowledgments. This work was supported by the National Key Research and
Development Program of China (No. 2020AAA0106700) and National Natural Science
Foundation of China (No. 62022027).

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

2. Berend, G.: Opinion expression mining by exploiting keyphrase extraction. In:
IJCNLP, pp. 1162–1170, November 2011

3. Chan, H.P., Chen, W., Wang, L., King, I.: Neural keyphrase generation via rein-
forcement learning with adaptive rewards. In: ACL, pp. 2163–2174, July 2019

4. Chen, W., Chan, H.P., Li, P., King, I.: Exclusive hierarchical decoding for deep
keyphrase generation. In: ACL, pp. 1095–1105, July 2020

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734, October 2014

6. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., Salakhutdinov, R.: Transformer-
XL: attentive language models beyond a fixed-length context. In: ACL (2019)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL, June 2019

8. Domhan, T.: How much attention do you need? A granular analysis of neural
machine translation architectures. In: ACL, pp. 1799–1808, July 2018

9. Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-
sequence learning. In: ACL, pp. 1631–1640, August 2016

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

11. Hulth, A.: Improved automatic keyword extraction given more linguistic knowl-
edge. In: EMNLP, pp. 216–223 (2003)

12. Hulth, A., Megyesi, B.B.: A study on automatically extracted keywords in text
categorization. In: ACL, pp. 537–544. ACL-44 (2006)

Searching Effective Transformer for Seq2Seq Keyphrase Generation 97

13. Jones, S., Staveley, M.S.: Phrasier: a system for interactive document retrieval
using keyphrases. In: SIGIR, pp. 160–167 (1999)

14. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: SemEval-2010 task 5: automatic
keyphrase extraction from scientific articles. In: SemEval 2010, pp. 21–26 (2010)

15. Koehn, P., Knowles, R.: Six challenges for neural machine translation. In: Proceed-
ings of the First Workshop on NMT, pp. 28–39, August 2017

16. Krapivin, M., Autaeu, A., Marchese, M.: Large dataset for keyphrases extraction.
Technical report, University of Trento (2009)

17. Le, T.T.N., Nguyen, M.L., Shimazu, A.: Unsupervised keyphrase extraction: intro-
ducing new kinds of words to keyphrases. In: Kang, B.H., Bai, Q. (eds.) AI 2016:
Advances in Artificial Intelligence, pp. 665–671 (2016)

18. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. arXiv preprint
arXiv:2106.04554 (2021)

19. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345 (2019)

20. Luo, Y., Xu, Y., Ye, J., Qiu, X., Zhang, Q.: Keyphrase generation with fine-grained
evaluation-guided reinforcement learning. arXiv preprint arXiv:2104.08799 (2021)

21. Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase
generation. In: ACL, pp. 582–592, July 2017

22. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: EMNLP (2004)
23. Nguyen, T.D., Kan, M.Y.: Keyphrase extraction in scientific publications. In: Inter-

national Conference on Asian Digital Libraries, pp. 317–326 (2007)
24. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-

tations. In: Walker, M.A., Ji, H., Stent, A. (eds.) NAACL-HLT (2018)
25. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
26. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood

knowledge. In: AAAI, pp. 855–860 (2008)
27. Wang, L., Cardie, C.: Domain-independent abstract generation for focused meeting

summarization. In: ACL, pp. 1395–1405, August 2013
28. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-

level sentiment analysis. In: EMNLP, pp. 347–354, October 2005
29. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA:

practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Con-
ference on Digital Libraries, DL 1999, New York, NY, USA, pp. 254–255 (1999)

30. Yan, H., Deng, B., Li, X., Qiu, X.: TENER: adapting transformer encoder for name
entity recognition. arXiv preprint arXiv:1911.04474 (2019)

31. Yuan, X., et al.: One size does not fit all: generating and evaluating variable number
of keyphrases. In: ACL, pp. 7961–7975, July 2020

32. Zaheer, M., et al.: Big bird: transformers for longer sequences. arXiv preprint
arXiv:2007.14062 (2020)

http://arxiv.org/abs/2106.04554
http://arxiv.org/abs/1908.08345
http://arxiv.org/abs/2104.08799
http://arxiv.org/abs/1911.04474
http://arxiv.org/abs/2007.14062

	Searching Effective Transformer for Seq2Seq Keyphrase Generation
	1 Introduction
	2 Methodology
	2.1 Reduce Attention to Uninformative Content
	2.2 Relative Multi-head Attention

	3 Experiment Settings
	3.1 Notations and Problem Definition
	3.2 Datasets
	3.3 Evaluation Metrics
	3.4 Implementation Details

	4 Results and Discussions
	4.1 Applying Transformer to Keyphrase Generation
	4.2 Tuning Transformer Model
	4.3 Adapting Transformer to Keyphrase Generation
	4.4 Observations and Findings

	5 Related Work
	6 Conclusion
	References

