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Abstract    Fine-tuning pre-trained language models like BERT have become an effective way in natural language pro-

cessing (NLP) and yield  state-of-the-art  results  on many downstream tasks.  Recent  studies  on adapting BERT to new

tasks mainly focus on modifying the model structure, re-designing the pre-training tasks, and leveraging external data and

knowledge. The fine-tuning strategy itself has yet to be fully explored. In this paper, we improve the fine-tuning of BERT

with two effective mechanisms:  self-ensemble and self-distillation.  The self-ensemble mechanism utilizes  the checkpoints

from an experience pool to integrate the teacher model. In order to transfer knowledge from the teacher model to the stu-

dent model efficiently, we further use knowledge distillation, which is called self-distillation because the distillation comes

from  the  model  itself  through  the  time  dimension.  Experiments  on  the  GLUE benchmark  and  the  Text  Classification

benchmark show that our proposed approach can significantly improve the adaption of BERT without any external data

or  knowledge.  We conduct  exhaustive  experiments  to  investigate  the  efficiency of  the  self-ensemble  and self-distillation

mechanisms, and our proposed approach achieves a new state-of-the-art result on the SNLI dataset.
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1    Introduction

The  pre-trained  language  models  including

BERT[1] and its  variants  (XLNet[2] and RoBERTa[3])

have  been  proven  beneficial  for  many  natural  lan-

guage processing (NLP) tasks, such as text classifica-

tion, question answering[4] and natural language infer-

ence[5].  These  pre-trained models  have  learned gener-

al-purpose  language  representations  on  a  large

amount  of  unlabeled  data.  Therefore,  adapting  these

models to the downstream tasks can bring a good ini-

tialization and avoid training from scratch. There are

two common ways to utilize these pre-trained models

on  downstream  tasks:  feature  extraction  (where  the

pre-trained  parameters  are  frozen),  and  fine-tuning

(where  the  pre-trained  parameters  are  unfrozen  and

fine-tuned)[6].  Although  both  ways  can  significantly

improve  the  performance  of  most  downstream  tasks,

the  fine-tuning  way  usually  achieves  better  results

than  the  feature  extraction  way[7].  Thus  it  is  worth

paying attention to find a good fine-tuning strategy.

As  a  widely-studied  pre-trained  language  model,

the  potential  of  BERT  can  be  further  boosted  by

modifying  the  model  structure[8, 9] and  re-designing

pre-training objectives[2, 3, 10, 11], data augmentation[12]

and  multi-stage  transfer[13].  However,  the  fine-tuning

strategy itself has yet to be fully explored.

In this paper, we investigate how to maximize the

utilization  of  BERT by  a  better  fine-tuning  strategy

without  utilizing  external  data  or  knowledge.  BERT

is usually fine-tuned by using the stochastic gradient

descent  (SGD)  method.  In  practice,  the  performance

of  fine-tuning  BERT  is  often  sensitive  to  different

random seeds and the order of training data, especial-
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ly when the last training sample is noise. To alleviate

this,  the  ensemble  method[14] is  widely-used  to  com-

bine  several  fine-tuned  based  models  since  it  can  re-

duce  overfitting  and  improve  model  generalization.

The ensemble BERT usually achieves superior perfor-

mance to the single BERT model. However, the main

disadvantages  of  the  ensemble  method  are  its  model

size  and  training  cost.  The  ensemble  model  needs  to

keep multiple fine-tuned BERTs and has low compu-

tation efficiency and high storage cost.

As  illustrated  in Fig.1,  we  improve  the  fine-tun-

ing  approach  of  BERT  by  introducing  two  mecha-

nisms: self-ensemble and self-distillation.

Self-Ensemble.  Motivated  by  the  success  of  wide-

ly-used ensemble models, we firstly propose a self-en-

semble method, in which the base models are the pre-

vious  checkpoints  within  a  single  training  process[15].

Then  we  compute  the  output  through  a  majority

vote.  To  further  reduce  the  model  complexity  of  the

ensemble  model,  we  use  a  more  efficient  ensemble

method, which combines several base models with pa-

rameter averaging rather than keep several base mod-

els. In summary, in order to compute the output log-

it, there are two self-ensemble methods: one for com-

puting  the  average  of  the  result,  and  the  other  for

computing  the  average  of  parameters.  Furthermore,

to  break  the  temporal  correlations  by  mixing  more

and  less  recent  checkpoints,  we  introduce  an  experi-

ence  pool[16] to  store  the  past  checkpoints.  In  each

step, some models in the experience pool are sampled

to establish the teacher model via self-ensemble.

Self-Distillation.  We further  use  knowledge  distil-

lation[17] to improve fine-tuning efficiency. In this pa-

per,  time step t indicates  that  the  model  parameters

have been optimized by t times, and time step 0 indi-

cates  the  initial  parameters.  At  each  time  step  in

training,  the  current  BERT  model  (called  student

model)  is  learned  with  two  teachers:  the  gold  labels

and self-ensemble model (called teacher model). With

the  help  of  the  teacher  model,  the  student  model  is

more  robust  and  accurate.  Moreover,  a  better  stu-

dent model further leads to a better teacher model. A

similar  idea  is  also  used  in  semi-supervised  learning,

such  as  temporal  ensembling[18] and mean teacher[19].

Different  from  them,  our  proposed  self-distillation

aims to optimize the student model without external

data.  More  recently,  ODC[20] and  FastBERT[21] also

introduce self-distillation.

Different  from  previous  self-distillation  mecha-

nisms that distill  knowledge from the following three

perspectives:  previous  best  checkpoints[20],  outputs  of

other  transformer  layers[21],  and  the  L2  distance  to

the prediction with augmented data[19], our self-distil-

lation method distills knowledge from an ensemble of

past checkpoints of the student model.

In  this  paper,  we  propose  a  simple  but  effective

fine-tuning approach containing two mechanisms: self-

ensemble  and  self-distillation.  The  self-ensemble

mechanism includes  two  methods  of  parameter  aver-

aging and logits  voting respectively.  The self-distilla-

tion  mechanism  include  one  method  that  distills

knowledge from the teacher model constructed by the
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Fig.1.  Illustration of our proposed fine-tuning approach.  is the current parameters which have been optimized by t times. (x,y) is
the input training sample.  and  denote the self distillation loss and the task-specific loss, respectively. N and K are the size
of the experience pool and the size of the teacher model respectively.
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self-ensemble  mechanism.  We  evaluate  our  fine-tun-

ing approach on the GLUE benchmark and the classi-

fication  benchmark.  The  experiments  on  the  GLUE

benchmark[22] show our proposed approach has an av-

erage  of  0.9-point  performance  boost  compared  with

vanilla  BERT  fine-tuning.  The  experiments  on  the

classification  benchmark  show  our  proposed

approach has the average of relative change of 6.26%.

To further analyze our approach, we conduct exhaus-

tive experiments including analyzing the training sta-

bility, the training curves, and the difference between

the two self-ensemble methods.

The contributions of this paper are as follows.

• We show the potential of BERT can be further

stimulated  by  a  better  fine-tuning  approach  without

leveraging external knowledge or data.

• We propose two self-ensemble methods: one for

computing the average of the result, and the other for

computing  the  average  of  parameters.  The  methods

can  improve  BERT  without  significantly  decreasing

the training efficiency.

• We propose a self-distillation method with expe-

rience replay. This method can utilize the distillation

mechanism to  transfer  knowledge  from teacher  mod-

els constructed by the self-ensemble mechanism.

This  paper  is  organized  as  follows: Section 2 re-

views  some  related  work, Section 3 introduces  our

proposed  fine-tuning  approach, Section 4 shows  the

experimental  setup  and  results,  and Section 5 con-

cludes the paper. 

2    Related Work

We briefly review three kinds of related work: pre-

trained  language  models,  knowledge  distillation  for

NLP applications, and self-distillation. 

2.1    Pre-Trained Language Models

It has become a new paradigm for NLP that first
pre-train language models on a large amount of unla-
beled  data  and  then  fine-tune  the  parameters  in
downstream tasks[6].  It  also makes a breakthrough in
many  NLP  tasks.  Most  recent  pre-trained  language
models (e.g., BERT[1], XLNet[2] and RoBERTa[3]) are
built with Transformer architecture[23].

As a wide-used model, BERT is pre-trained on the

masked  language  model  (MLM)  task  and  next  sen-

tence prediction (NSP) task via a large cross-domain

unlabeled  corpus.  When  fine-tuning  on  downstream

tasks, BERT takes an input of a sequence of no more

[CLS]

[SEP]

than 512 tokens and outputs the representation of the

sequence.  The  sequence  has  one  segment  for  single-

sentence  tasks  or  two  for  pairwise-sentence  tasks.  A

special  token  is  added  before  segments  which

contain the sequence representations. Another special

token  is used for separating segments. 

2.2    Knowledge Distillation for NLP

Applications

Since  the  pre-trained  language  models  usually

have  an  extremely  large  number  of  parameters,  fine-

tuning  them  on  a  downstream  task  usually  needs  a

high computation cost, which is difficult to deploy on

the  resource-restricted  devices.  [17]  proposes  knowl-

edge  distillation  with  a  teacher-student  architecture

to transfer the knowledge from a large teacher model

to  a  small  student  model  by  reproducing  the  behav-

iors  of  the  teacher  model.  Following  the  teacher-stu-

dent  architecture,  recent  studies[24–27] have  designed

special  objective  functions  to  distill  knowledge  from

pre-trained language models. 

2.3    Self-Distillation

Generally  speaking,  the  teacher  model  is  usually

well-trained and fixed in the processing of knowledge

distillation  and  has  more  parameters  than  the  stu-

dent one, and the student model is trained with a ob-

jective  function  computed  by  the  distillation  mecha-

nism.  Moreover,  despite  distilling  from  the  teacher

model,  the  student  one also  can distill  knowledge by

itself throughout an online knowledge distillation.

δ

On  computer  vision  (CV),  a  similar  idea  is  also

used in semi-supervised learning, such as temporal en-

sembling[18] and mean teacher[19]. During the semi-su-

pervised  learning,  the  input  data  is  augmented  by  a

disturbed .  The objective  of  the  mean teacher  is  to

minimize  the  L2  distance  between  the  prediction  of

the teacher model and that of the student model.

On  NLP,  online  distillation  from  the  best  check-

point (ODC)[20] is applied on neural machine transla-

tion  tasks.  The  teacher  model  of  ODC  is  updated

when the checkpoint is the best on the validation da-

ta,  and it  is  used to lead the training of  the student

model  when  the  validation  performance  declines.

Moreover,  FastBERT[21] contains  a  self-distillation

loss function that distills knowledge from the outputs

of the last layer to the outputs of other layers. 

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 855



2.4    Neural Network Ensemble

According  to  previous  surveys[14, 28],  the  neural

network ensemble method can be separated into three

parts.  The first  part  is  about  the  individual  network

generation  method,  including  applying  diverse  input

data, redesigning ensemble objective function, and se-

lecting neural networks. The second part is about the

conclusion generation method,  including the  absolute

majority vote and the relative majority vote. The last

part is about the module ensemble method, including

fusing garnular computing (GrC). 

3    Methodology of Fine-Tuning BERT

The  fine-tuning  of  BERT  usually  aims  to  mini-

mize the cross-entropy loss on a specific task with the

stochastic  gradient  descent  method.  Due  to  the

stochastic nature, the performance of fine-tuning is of-

ten  affected  by the  random orderings  of  the  training

data, especially when the last training sample is noise.

Our  fine-tuning  method  is  motivated  by  the  en-

semble method and knowledge distillation. It consists

of  two  models:  a  student  model  is  the  fine-tuning

BERT, and a teacher model is a self-ensemble of sev-

eral student models sampled from the experience pool.

At each time step, we further distill the knowledge of

the teacher model to the student model. 

3.1    Fine-Tuning Vanilla BERT

h

[CLS]

y

BERT  can  deal  with  different  natural  language

tasks with task-specific output layers. For the GLUE

benchmark,  BERT takes  the  final  hidden  state  of

the  first  token  as  the  representation  of  the  in-

put sentence or sentence-pair. A simple softmax clas-

sifier  is  added  to  the  top  of  BERT  to  predict  the

probability of label : 

p(y|h) = softmax(Wh),

W

Lts(·)
W

where  is  the  task-specific  parameter  matrix.  A

task-specific  loss  is  used  to  fine-tune  BERT as

well as  jointly: 

Lts(·) =
{
CE(ŷ, y), for classification tasks,
MSE(ŷ, y), for regression tasks,

(1)

ŷ = p(y| )

CE(·) MSE(·)
where h  is  predicted  by  the  BERT  model,

while  and  indicate  cross-entropy  loss

and mean square error respectively. 

3.2    Self-Ensemble

θt ( , y)

The basic idea of  self-ensemble is  inspired by the

famous  proverb “look  before  you  leap”.  On  vanilla

BERT  fine-tuning,  the  parameters  are  optimized  by

an objective function which only relies on current pa-

rameters  as well as the training sample x . Pre-

vious  work  shows  that  experience  replay  benefits  to

reinforcement learning[16, 29, 30]. Motivated by this, we

propose  the  self-ensemble  mechanism  throughout  an

experience pool.

θt
t

Let  denote parameters when fine-tuning BERT

at time step . The experience pool is defined as: 

Θ̂t = {θ̂t,1, θ̂t,2, . . . , θ̂t,N},

N

θ̂t,i ∈ {θ0, θ1, . . . , θt} i ∈ [1, N ]

where  indicates the size of the experience pool, and

 for all .

Then, we randomly sample models from the expe-

rience pool to establish the teacher model: 

Θ̃t = {θ̃t,1, θ̃t,2, . . . , θ̃t,K}, (2)

K ∈ [0, N ]

θ̃t,i ∈ Θ̂t i ∈ [1, K] K = 0

where  indicates  the  teacher  size,  and

 for  all .  Specially,  indicates

the  vanilla  BERT  fine-tuning  mentioned  in Subsec-

tion 3.1.

N θtIn the first  steps,  are  filled into the experi-

ence  pool.  After  that,  one  of  the  teacher  models  will

be  removed  from  the  experience  pool  when  the  pa-

rameters  have  been  optimized.  In  order  to  keep  the

diversity  of  the  experience  pool  as  much  as  possible,

instead  of  removing  the  oldest  checkpoint,  the  re-

moved model is selected randomly: 

Θ̂t+1 =
(
Θ̂t − {θ̃t,j}

)
∪ {θt+1},

θ̃t,jwhere  indicates the removed model.

θi

K

In  the  training  phase,  each  of  the  checkpoints 

will  participate the composition of the teacher model

at least once and with the expectation of  times.

K Θ̃tAs mentioned above,  models are selected as ,

which  integrates  the  teacher  model.  As  shown  in

Fig.2, there are two different methods to establish the

teacher model: parameter averaging and logits voting.

Usually, parameter averaging has better computation-

al and memory efficiency than logits voting. 

3.3    Self-Distillation with Experience Replay

Although  the  self-ensemble  mechanism  contains

an experience pool, it cannot transfer knowledge from

the  teacher  model  to  the  student  model  directly.
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Thus, we propose self-distillation mechanism to trans-

fer the “dark knowledge”[17].

Lsd(·)

Previous  distillation  models[24, 25, 31, 32] mainly  fo-

cus  on  a  two-stage  training:  1)  training  the  teacher

model,  2)  fixing  the  teacher  model  and  training  the

student  model.  This  training  procedure  leads  to  the

teacher model not being improved during the distilla-

tion procedure. But, our proposed self-ensemble mech-

anism  utilizes  the  experience  pool's  checkpoints  to

build  the  dynamic  teacher  model.  With  the  help  of

the  teacher  model,  the  student  model  will  become

more  robust  and  more  accurate.  With  a  better  stu-

dent model, the teacher model at the future time step

is  better  either.  In  the  training  phase,  a  self-distilla-

tion loss  is added to the objective function: 

L(·) = Lts(·) + λLsd(·),

Lts(·) λ

θt
L(·)

where  is  defined at (1),  and  is  the weight of

the self-distillation loss. The model parameters  are

optimized by .

Following the two methods establishing the teach-

er  model,  there  are  two kinds  of  self-distillation loss:

self-distillation averaged, and self-distillation voted. 

3.3.1    Self-Distillation Averaged (SDA)

BERTSDAWe first denote a fine-tuning method , in

which the teacher model is self-ensemble BERT with

parameter averaging.

Previous  work  has  shown  that  averaging  model

weights  over  training  steps  tends  to  produce  a  more

accurate  model  than  using  the  final  weights

directly[15]. Following this, the teacher model with pa-

rameter averaging can be computed by: 

θ̄t =
1

K

K∑
k=1

θ̃t,k,

K θ̃t,kwhere  and  are defined in (2).

BERTSDA

y x

Similar  to  other  self-distillation  models[20, 21],  the

self-distillation loss of  does not rely on label

,  but  only  relies  on  input .  We use  mean squared

error loss to estimate the logit-divergence between the

student model and the teacher model: 

Lsd(x) = MSE
(
BERTϑt

(x), BERTθ̄t(x)
)
,

MSE

BERTθ(·)
θ

where  denotes  the  mean  squared  error,  and

 denotes the logits outputted by the BERT

models with parameters .

θ0 θt−1

N

K t

BERTSDA(K=t)

More specially, we use a moving average to record

the  average  of  parameters  from  to ,  which

means  the  size  of  experience  pool  and  the  size  of

the  teacher  model  both  keep  moving  with .  For

consistency, we define this case as . 

3.3.2    Self-Distillation Voted (SDV)

BERTSDV

As  a  comparison,  we  also  propose  an  alternative

self-distillation  method  by  establishing  the

teacher model through logits voting.

BERTSDV

Different  from parameter  averaging,  logits  voting

needs  to  compute  logits  on  each  teacher  model  and

then  sums  the  logits  up.  The  self-distillation  loss  of

the  method can be defined as: 

Lsd(x) = MSE

(
BERTθt(x),

1

K

K∑
k=1

BERTθ̃t,k(x)

)
.

BERTSDV

BERTSDA BERTSDV

K BERTSDV

BERTSDA K = 1

Since  the  teacher  model  aggregates  the  informa-

tion of student models after every time step, it is usu-

ally more robust than a single student model without

self-distillation. Moreover, a better student model fur-

ther  leads  to  a  better  teacher  model.  Generally,  the

training  efficiency  of  is  lower  than  that  of

 since  needs  to  process  the  input

with  teacher  models.  Specially,  is  the

same as  when . 

4    Experiments

We  improve  BERT  fine-tuning  via  self-ensemble
and self-distillation. The vanilla fine-tuning method of

BERT is used as our baseline. Then we evaluate our
proposed  fine-tuning  method  on  the  GLUE  bench-
mark[22] and  classification  benchmarks  to  demon-

 

(b)(a)





 

BERT BERT

Average Voting

BERT BERT BERT BERT

 

Fig.2.  Two methods to compute the output of the teacher model. (a) Parameter averaging. (b) Logits voting.
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strate the feasibility of our self-distillation model. 

4.1    Datasets

Our  proposed  method  is  evaluated  on  the  GLUE

benchmark[22] and  classification  benchmarks.  The

statistics of the benchmarks are shown in Table 1 and

Table 2 respectively.  We  use  ``#''  to  indicate  ``the

number of''. 

4.1.1    GLUE Benchmark

CoLA. The  Corpus  of  Linguistic  Acceptability

(CoLA)  is  a  binary  classification  task  to  predict

whether  the  given  English  sentence  is “linguistically

acceptable” or not[33].

SST-2. The Stanford Sentiment Treebank (SST-2)

is a corpus extracted from movie reviews with human

annotations  of  their  sentiment[34].  The  task  aims  to

predict whether the reviews are positive or negative.

MRPC. The  Microsoft  Research  Paraphrase  Cor-

pus (MRPC)[35] consists of sentence pairs automatical-

ly extracted from online news sources. The task aims

to  predict  the  human  annotations  for  whether  the

sentences in the pair are semantically equivalent.

STS-B. The  Semantic  Textual  Similarity  Bench-

mark (STS-B)[36] is a collection of sentence pairs col-

lected  from  news  headlines,  video,  image  captions,

and other resources. The data is annotated through a

continuous score from 0 to 5, which denotes how simi-
lar  the  two  sentences  are.  This  task  is  evaluated  by
Pearson  correlation  (P.  corr)  and  Spearman  correla-
tion (S. corr).

QQP. The Quora Question Pairs (QQP)① is a bi-
nary classification task aiming to predict whether two
questions asked on Quora are semantically equivalent.

MNLI. The  Multi-Genre  Natural  Language  Infer-
ence  (MNLI)[37] corpus  is  a  crowdsourced  entailment
classification  task  with  about  433k  sentence  pairs.  It
has two development sets and two test sets: matched
(MNLI-m) and mismatched (MNLI-mm).

QNLI. The  Question  Natural  Language  Inference

(QNLI)[22] is a binary classification task built from the

Stanford  Question  Answering  Dataset[4].  The  task

aims  to  predict  whether  the  question-sentence  pair

contains the correct answer or not.
RTE. The  Recognizing  Textual  Entailment

(RTE)[22] dataset  is  collected from a series  of  annual
challenges on textual entailment. 

4.1.2    Classification Benchmark

IMDb. IMDb[39] is  a  binary  sentiment  analysis

dataset  from  the  Internet  Movie  Database.  The

dataset has 25 000 training examples and 25 000 vali-

dation  examples.  The  task  is  to  predict  whether  the

review text is positive or negative.

AG’s News. AG’s corpus[40] of the news articles on
 

Table  1.    Summary Statistics of GLUE Benchmark

Dataset #Labels #Train Samples #Development Samples #Test Samples Metric

CoLA[33] 2 8 551 1 043 1 063 Matthews correlation coefficient[38]

SST-2[34] 2 67 349 872 1 821 Accuracy

MRPC[35] 2 3 668 408 1 725 F1Accuracy/

STS-B[36] 1 5 749 1 500 1 379 Pearson/Spearman correlation

QQP① 2 363 849 40 430 390 965 F1Accuracy/

MNLI-m[37] 3 392 702 9 815 9 796 Accuracy

MNLI-mm[37] 3 392 702 9 832 9 847 Accuracy

QNLI[22] 2 104 743 5 463 5 463 Accuracy

RTE[22] 2 2 490 277 3 000 Accuracy

 

Table  2.    Summary Statistics of Six Widely-Studied Text Classification and Natural Language Inference (NLI) Datasets

Type Dataset #Labels #Train Samples #Development Samples #Test Samples

Text classification IMDb[39] 2 25 000 0 25 000

AG's News[40] 4 120 000 0 7 600

DBPedia[40] 14 560 000 0 70 000

Yelp Polarity[40] 2 560 000 0 38 000

Yelp Full[40] 5 650 000 0 50 000

NLI SNLI[5] 3 549 367 9 842 9 824
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the  web  contains 496 835 categorized  news  articles.

The  four  largest  classes  from  this  corpus  with  only

the  title  and  description  fields  are  chosen  to  con-

struct the AG’s News dataset.

DBPedia. DBPedia[40] is a crowd-sourced commu-

nity  effort  that  includes  structured  information  from

Wikipedia.  The  DBPedia  dataset  is  constructed  by

picking  14  non-overlapping  classes  from  DBPedia

2014  with  only  the  title  and  abstract  of  each

Wikipedia article.

Yelp. The Yelp dataset is obtained from the Yelp

Dataset  Challenge  in  2015,  built  by  [40].  There  are

two classification tasks in this dataset: Yelp Full and

Yelp  Polarity.  Yelp  Full  predicts  the  full  number  of

stars (1 to 5) which are given by users, and the other

predicts a polarity label that is positive or negative.

SNLI. The  Stanford  Natural  Language  Inference

Corpus[5] is  a  collection  of  570k  human-written  En-

glish  sentence  pairs  manually  labeled  for  balanced

classification with the labels on entailment, contradic-

tion, or neutral. 

4.2    Implementation Details

N K λThe  selection  of  hyperparameters , ,  and 

which are defined in Section 3, can be seen in Subsec-

tion 4.3.  The  other  hyperparameters  of  our  proposed

methods are the same as those in the official BERT[1].

2× 10−5

1× 10−3

We use AdamW optimizer with the warm-up pro-

portion  of  0.1,  base  learning  rate  for  the  BERT  en-

coder  of ,  base  learning  rate  for  the  softmax

layer of , and dropout probability of 0.1. For

sequences  of  over  512  tokens,  we  truncate  them and

choose head 512 as the model input. We fine-tune all

models on one RTX 2080Ti GPU. Due to the limita-

tion of GPU memory, the batch size is different from

4  (for  classification  tasks  with  long  sequence  length)

to  16  (for  GLUE  benchmark  with  short  sequence

length) and the gradient accumulation step is 8.

BERTSDA

N = K = 5

Taking  IMDb  as  an  example,  with

 spends  about  1.5x  training  time  com-

pared  with  the  vanilla  fine-tuning,  while  it  is  about

BERTSDV

N = K = 5

2.8x–3x  training  times  in  the  case  of  with

. 

4.3    Model Selection

BERTSDA BERTSDV

N K

λ

As  shown  in Subsection 3.2 and Subsection 3.3,

there are three main hyperparameters in our fine-tun-

ing methods  and : size of the expe-

rience pool , size of the teacher model , and self-

distillation weight .

In  this  subsection,  we  mainly  choose  four  repre-

sentative tasks to evaluate the effects of our hyperpa-

rameters:  a  task  for  single-sentence  classification

(SST-2),  a  task  for  pairwise-sentence  classification

(MRPC),  a  task  for  text-similarity  regression  (STS-

B),  and  a  task  for  relevance  ranking  (QNLI).  In  the

tables of this paper, the best results are in bold. 

N4.3.1    Size of Experience Pool 

N K = 3 λ = 0.1

N

In  this  subsection,  we  will  explore  the  effects  of

. For convenience, we firstly set  and .

Then  we  change  the  size  of  experience  pool .  Re-

sults are shown in Table 3.

N

BERTSDA BERTSDV

N = 5

N = 5

According  to  the  experimental  result,  some  tasks

are  not  sensitive  to  the  value  of ,  while  the  other

tasks are sensitive. Similar observations can be found

on  both  and .  For  sensitive  tasks

such  as  SST-2  and  MRPC,  our  fine-tuning  method

usually gets a good result when . Therefore, we

set  in the following experiments. 

K4.3.2    Size of Teacher Model 

N = 5 λ = 0.1

In this subsection, we choose different sizes of the

teacher  model  and  evaluate  our  model  in  four  tasks.

Following Subsection 4.3.1, we set  and .

Results are shown in Table 4.

K

From  the  experimental  results,  the  size  of  the

teacher  model  is  sensitive  to  datasets.  Thus,  we  se-

lect the best  for each task in the following experi-

ment. 

 

Table  3.    Effects (%) of N on the Development Set of Four Representative Tasks

Task Metric BERTSDV BERTSDA

N = 3 N = 4 N = 5 N = 8 N = 10 N = 3 N = 4 N = 5 N = 8 N = 10

SST-2 Accuracy 93.3 93.2 93.5 93.0 92.8 93.3 92.8 93.5 92.9 92.8

MRPC F1Accuracy/ 86.3 87.5 89.0 88.2 86.5 86.2 86.3 88.2 86.5 87.3

STS-B P. corr 90.0 90.0 90.0 90.0 90.0 89.9 89.9 90.0 89.9 90.0

S. corr 89.7 89.7 89.7 89.6 89.7 89.5 89.6 89.6 89.5 89.6

QNLI Accuracy 91.2 91.4 91.3 91.2 91.2 91.5 91.3 91.8 91.5 91.4
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λ4.3.3    Self-Distillation Weight 

λ

N = 5 K

In  this  part,  we  conduct  experiments  to  explore

the  effects  of .  Following Subsection 4.3.1 andSub-

section 4.3.2, we set  and choose different .

λ ∈ [0.1, 0.3]

λ ∈ [1.0, 1.5]

λ [1.0, 1.5]

λ

[0.1, 0.3]

As shown in Fig.3,  has better results

in  STS-B  than  the  other  ranges,  while 

performs better  than the other  ranges in IMDb. Our

observation on loss curve (see Subsection 4.5.2) shows

that the norms between task-specific loss and self dis-

tillation  loss  should  apply  within  a  suitable  ratio.

Therefore,  should be set in  for large-scaled

tasks, such as IMDb, SST-2, and so on. In contrast, 

should  be  set  in  for  the  task  with  limited

training examples, such as MRPC, STS-B, and so on.
 

4.4    Model Performance

We  explored  the  selection  of  hyperparameters  in

Subsection 4.3.  In  this  subsection,  we  will  evaluate

our  proposed  fine-tuning  method  for  the  BERT  and

RoBERTa models  on  the  GLUE benchmark and the

classification benchmarks.
 

4.4.1    Effects on Fine-Tuning BERT-Base

In  this  subsection,  we  use  12-layer  Transformer

encoders (BERT-Base) as our mainly component and

evaluate our methods on the GLUE benchmark.

As  shown  in Table 5 and Table 6,  where  Mcc

means  Matthew's  correlation  coefficient  and  Acc

means  accuracy,  our  self-ensemble  and  self-distilla-

tion method improve fine-tuned models on the GLUE

benchmark. We firstly re-implement fine-tuning vanil-

la  BERT  and  submit  it  to  the  GLUE  server  as  our

baseline. Compared with the baseline, our self-ensem-

ble and self-distillation method has a 0.9-point perfor-

mance boost on the test set of the GLUE benchmark. 

4.4.2    Effects  on  Fine-Tuning  BERT-Large  and

RoBERTa-Large

K

We  also  investigate  whether  self-distillation  has

similar  findings  for  the  BERTLARGE (BERT-L)  and

RoBERTaLARGE (RoBERTa-L)  model,  containing  24

Transformer layers.  For  convenience,  we set  two dif-

ferent  sizes  of  the  teacher  model  for  comparison.

For IMDb and AG's  News,  we report  test  error  rate

(%).  For  SNLI,  we  report  accuracy  (%).  XLNet  has

 

KTable  4.    Effects (%) of  on the Development Set of Four Representative Tasks

Task Metric BERTSDV BERTSDA

K = 1 K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

SST-2 Accuracy 92.9 93.5 93.5 93.0 93.2 93.1 93.5 92.9 93.1

MRPC F1Accuracy/ 87.0 88.1 89.0 87.8 86.7 86.8 87.3 87.2 87.2

STS-B P. corr 90.1 90.0 90.0 90.0 90.2 90.0 90.0 90.0 90.1

S. corr 89.8 89.7 89.7 89.7 89.8 89.6 89.6 89.6 89.7

QNLI Accuracy 91.5 91.2 91.3 91.4 91.4 91.7 91.8 91.5 91.7
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λFig.3.  Comparison of different  on: (a) STS-B (development set) and (b) IMDb (test set). T: the total number of iterations.
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BERT-LSDA RoBERTa-LSDA

∆ BERT-LSDA
RoBERTa-LSDA 7.02% 5.81%

BERT-LSDV RoBERTa-LSDV

BERT-LSDV RoBERTa-LSDV
6.59% 9.76%

the state-of-the-art result  on text classification tasks.

MT-DNN fine-tunes  BERT with  multi-task  learning.

CA-MTL fine-tunes RoBERTa with multi-task learn-

ing. In Table 7, self-distillation also gets a significant

gain while fine-tuning BERT-L. On two text classifi-

cation  tasks,  and  give  better

results  than  self-distillation-voted  models.  The  aver-

age  improvement  (Avg. )  of  and

 is  and , respectively. For the

NLI task,  and  give  better  re-

sults  than  self-distillation-average  models.  The  aver-

age  improvement  of  and  are

 and , respectively.

BERT-L

RoBERTa-L

Moreover,  although  our  self-distillation  mecha-

nism  does  not  leverage  the  external  data  or  knowl-

edge,  it  also gives a comparable performance of  MT-

DNN[11] on  and  outperforms  CA-MTL[41] on

.  MT-DNN  and  CA-MTL  fine-tune  BERT

and  RoBERTa  under  the  multi-task  learning  frame-

work  respectively.  In  SNLI,  MT-DNN  achieves  the

best  result  except  the  RoBERTa  models,  and  CA-

MTL is the previous state-of-the-art model.
 

4.5    Model Analysis

In this subsection, we will briefly analyze our pro-

posed  fine-tuning  method  in  two  perspectives:  train-

ing stability and convergence curves.
 

4.5.1    Training Stability

Fine-tuning  a  pre-trained  model  on  downstream

tasks  prevents  training  a  model  from  scratch,  which

usually  requires  a  high  computation  power.  Mean-

while, distinct random seeds can lead to substantially

different  results  when  fine-tuning  BERT  even  with

the same hyperparameters. In our fine-tuning method,

a  self-distillation  loss  function  is  added to  the  objec-

tive function. This function can be regarded as a con-

straint  on  regularization.  Thus,  we  assume  that  the

parameter  averaging  and  logits  voting  can  increase

 

Table  5.    Model Comparison (%) on the Development Set of the GLUE Benchmark

Model CoLA
(Mcc)

SST-2
(Acc)

MRPC
(Acc/F1)

STS-B
(P./S. Corr)

QQP
(Acc/F1)

MNLI-m/mm
(Acc)

QNLI
(Acc)

RTE
(Acc)

BERTBASE
[1] - 92.7 86.7/- - - 84.4/- 88.4 -

BERTBASE-ReImp 56.7 92.7 85.7/- 89.9/89.6 91.2/88.2 84.4/84.2 91.0 67.1

BERTSDA(ours) 60.7 93.5 89.0/- 90.2/89.8 91.4/88.4 84.8/85.2 91.8 71.8

BERTSDV(ours) 60.5 93.5 88.2/- 90.0/89.7 91.4/88.4 85.1/85.1 91.5 72.2

Note: “-” means not reported in [1]. “ReImp” indicates our implementation. We report results on the development set with the best
hyperparameters.
 

Table  6.    Model Comparison (%) on the Test Set of the GLUE Benchmark

Model CoLA
(Mcc)

SST-2
(Acc)

MRPC
(Acc/F1)

STS-B
(P./S. Corr)

QQP
(Acc/F1)

MNLI-m/mm
(Acc)

QNLI
(Acc)

RTE
(Acc)

Avg. Score

BERTBASE
[1] 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 79.7

BERTBASE-ReImp 52.2 93.4 88.3/84.8 86.7/85.6 71.0/89.2 84.3/83.4 90.5 66.5 79.6

BERTSDA(ours) 53.1 94.4 88.7/84.5 87.0/86.0 72.4/89.6 85.0/84.3 91.3 68.8 80.6

BERTSDV(ours) 52.6 94.6 88.4/84.4 86.9/85.7 72.5/89.7 85.3/84.3 91.4 68.9 80.5

 

Table  7.    Comparison of Different 24-Layer Models

Model Test Error Rate (%) ∆Avg.  (%) Accuracy of ∆ (%)

IMDb AG's News SNLI (%)

XLNet[2] 3.79 4.49 / / /

MT-DNN[11] / / / 91.6 /

CA-MTL[41] / / / 92.1 /

BERT-L (our implementation) 4.98 5.45 - 90.9 -

RoBERTa-L (our implementation) 3.88 5.33 - 91.8 -

BERT-LSDV 4.66 5.21 5.62 91.5 6.59

BERT-LSDA 4.58 5.15 7.02 91.4 5.49

RoBERTa-LSDV 3.58 5.03 5.62 92.6 9.76

RoBERTa-LSDA 3.48 5.02 5.81 92.5 8.54

Note: “/” indicates “not reported in the original paper”. “-” means the baseline.
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the  ability  of  generalization  and  reduce  the  variance

of model performance. In this subsection, we conduct

experiments to explore the effect of data order during

fine-tuning and prove our assumption.

θ0

This  experiment  is  conducted  with  a  set  of  data

order seeds.  A data order can be regarded as a sam-

ple of the set of permutations of the training data. In

this  subsection,  the  same  is  used  to  initialize  the

weight matrices of all models, and the data orders are

different. We run 10 times for each fine-tuning strate-

gy and record the results as shown in Table 8.
 
 

Table   8.      Statistics  of  Evaluation  Metrics  in  STS-B Within
10 Runs

Model Metric Max Min Avg. Std.

BERTBASE P. Corr 90.05 89.66 89.86 1.537× 10−1

S. Corr 89.64 89.30 89.48 1.249× 10−1

BERTSDA(K = 1) P. Corr 90.15 89.79 89.98 9.910× 10−2

S. Corr 89.79 89.48 89.62 8.710× 10−2

BERTSDA(K = 5) P. Corr 90.13 89.92 90.03 6.870× 10−2

S. Corr 89.74 89.53 89.63 7.330× 10−2

BERTSDV(K = 5) P. Corr 90.16 89.86 90.00 1.015× 10−1

S. Corr 89.77 89.43 89.60 1.104× 10−1

 

Statistics  of  evaluating  results  have  shown  that

our  method  has  better  performance  and  a  smaller

variance than the vanilla BERT fine-tuning. Since our

self-ensemble  mechanism inherits  the  property  of  the

ensemble model,  it  is  less  sensitive to the data order

than vanilla BERT fine-tuning. 

4.5.2    Convergence Curves

In this subsection, we conduct experiments to an-

alyze the effects of our models. The converge curve of

BERTBASE

89.60 89.63

the training phase is shown in Fig.4. According to the

experimental results, fine-tuning  cannot get

significant improvement in the last two epochs (from

 to ).  But  with  the  help  of  the  self-ensem-

ble  and  the  self-distillation  mechanisms,  the  model

keeps  improving  on  the  last  two  epochs.  Similar  ob-

servations can also be seen at IMDb.

Lts(·) Lsd(·)

To further analyze the reason for this observation,

we also record the curve of the task-specific loss func-

tion  and the self-distillation loss function 

on three datasets. As shown in Fig.5, the self-distilla-

tion  loss  increases  at  the  beginning  of  the  training

phase.  As  the  training  processes,  the  self-distillation

loss tends to oscillate. After that, the task-specific loss

tends  to  converge  on  the  last  training  steps,  which

cannot  bring  significant  improvements.  Therefore,

adding  the  self-distillation  loss  function  can  bring

more  knowledge,  continually  improving  the  model

even when the task-specific loss function cannot bring

significant gains.

λ

However,  the  shapes  of  the  loss  function  curves

are  also  related  to  the  characteristics  of  the  three

datasets. For MRPC and RTE, the number of train-

ing  examples  is  limited,  which  leads  to  a  significant

oscillation of self-distillation loss. Due to this observa-

tion, the weight of self-distillation loss  should be re-

lated to the scale of the training set. 

4.5.3    Ablation Study

In this subsection, we will compare our self-ensem-

ble  and  self-distillation  methods  with  other  fine-tun-

ing methods.

BERTBASE.  This  method  fine-tunes  BERT-Base
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Fig.4.  Convergence curves for different fine-tuning methods on (a) the development set of STS-B and (b) the test set of IMDb.
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without any extra fine-tuning strategy or external da-

ta. It is our baseline model.

BERTVOTE K.  This  method  fine-tunes  different

BERT models with different initial random seeds and

then sums up their probability distribution.

BERTAVG K.  This  method  fine-tunes  different

BERT models with different initial random seeds and

then  calculates  the  average  of  their  parameters.  The

average parameters are used to conduct a new BERT

model in the evaluation phase.

BERTSE BERTSDA BERTSDV

BERTSE

BERTSDA BERTSDV

, , and .  In  this  paper,

we  originally  propose  these  methods.  indi-

cates  only  using  self-ensemble  (see Subsection 3.2).

 and  indicate  self-distillation-aver-

age (Subsection 3.3.1) and self-distillation-voted (Sub-

section 3.3.2), respectively.

BERTBASE

BERTVOTE BERTAVG

BERTSE

BERTVOTE

As  shown  in Table 9, “ ” indicates  our

baseline  model, “ ” and “ ” indi-

cate  traditional  ensembles, “ ” indicates  the

method with only self-ensemble. In neural network en-

semble,  one  of  the  most  widely-used  ensemble  meth-

ods is the conclusion generation method that includes

the  absolute  majority  vote  and  the  relative  majority

vote. Therefore the comparison with “ ” can

be regarded as that with ensemble models. Compared

with  our  baseline,  self-ensemble  has  a  slightly  im-

provement  in  classification  tasks.  However,  the

method with only self-ensemble is worse than the tra-

ditional  ensemble  methods,  which  is  the  reason  why

we need self-distillation to further explore the poten-

tial  of  self-ensemble.  In  summary,  on  text  classifica-

tion  tasks,  SDA  and  SDV  have  a  higher  improve-

ment on average (5.65% and 6.26%) versus tradition-

al ensembles (5.44% and 4.07%). 

4.5.4    Discussion

In  this  subsection,  we  will  provide  some  discus-

sion  about  our  proposed  self-ensemble  and self-distil-

lation methods.

BERT SDA BERT SDV

BERTSDV

BERTSDA

Difference Between  and . We

evaluate  our  proposed  methods  (SDA  and  SDV)  on

classification benchmarks and the GLUE benchmark.

The results are shown in Table 9 and Table 6, respec-

tively.  Generally,  NLI-like  tasks  (e.g.,  SNLI,  QNLI,

QQP, MNLI, and RTE) are pairwise-sentences classi-

fication tasks, in which  usually obtains bet-

ter  performance.  On  the  other  hand,  in  single-sen-

tence  classification  tasks  (e.g.,  IMDb,  AG's  News,

DBPedia, Yelp),  usually obtains better per-
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Fig.5.  Loss curve of BERTSDA(K = 1) on four datasets. (a) MRPC. (b) RTE. (c) QNLI. (d) IMDb.
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formance.  Based  on  this  observation,  we  conclude

that  the  pairwise-sentences  classification  tasks  re-

quire  more  attention  on  segment-level  interactions,

which may be declined when applying parameter av-

erage.

BERTBASE BERTSDA

Why  Not  the  Latest  Checkpoints? In  order  to

prove  the  necessity  of  the  experience  pool,  we  con-

duct experiments on the AG's News dataset by using

the latest checkpoints. In this experiment, the experi-

ence  pool  will  remove  the  oldest  checkpoint  when  a

new  checkpoint  is  added.  The  experimental  result

shows  that  the  latest  checkpoints  perform  worse:  it

gets the test error rate of 5.60% when the baseline of

 is  5.71%  and  the  result  of  is

5.29%.  We  observe  that  the  difference  of  the  latest

checkpoints  is  limited  because  the  optimization  pro-

cess would only change the parameter matrices slight-

ly.  Therefore,  the  latest  checkpoints  can  be  summa-

rized in  similar  spaces,  which reduce  the  diversity  of

the experience pool.

KD

KD

Comparison  with  Distillation-Based  Methods. In

order to compare the self-distillation with other distil-

lation-based models, we conduct experiments in some

GLUE datasets.  In  this  experiment,  we  compare  our

model  with  MT-DNN[11] and  MT-DNN [32].  Results

are shown in Table 10. In some small datasets such as

CoLA, multi-task learning as well as knowledge distil-

lation obtain a higher gain; therefore MT-DNN  has

KD

KD

KD

BERTSDA BERTSDV

an obvious improvement. In some large datasets such

as  SST-2,  models  learn  much  knowledge  from  the

training set;  therefore MT-DNN  cannot provide an

obvious improvement. Different from MT-DNN , our

proposed  fine-tuning  approach  can  provide  improve-

ments  not  only  on  small  datasets  but  also  on  large

datasets.  In  summary,  our  proposed  fine-tuning  ap-

proach  gives  a  comparable  performance  of  MT-DNN

and MT-DNN  on large datasets such as SST-2 and

QNLI, while only obtains a similar performance with

MT-DNN  on  small  datasets  such  as  CoLA.  Due  to

the lack of external knowledge and the training data,

the  performances  of  and  are  ac-

ceptable compared with distillation-based models. 

5    Conclusions

In this  paper,  we proposed a simple  but  effective

fine-tuning  approach  for  BERT  without  external

knowledge  or  data.  Specifically,  we  introduced  two

mechanisms:  self-ensemble  and  self-distillation.  The

self-ensemble mechanism introduces the experience re-

play and establishes  the teacher model  with parame-

ter  averaging  or  logits  voting.  With  self-distillation

which  leads  to  better  teacher  models,  the  students

benefit from previous experience and become more ro-

bust.  Experiments  on  the  GLUE  benchmark  showed

that our fine-tuning approach not only has a 0.9-point

 

BERTBASETable  9.    Comparison of Fine-Tuning the BERT-Base ( ) Model

Model Test Error Rate (%) Accuracy (%)

IMDb AG's News DBPedia Yelp Polarity Yelp Full ∆Avg. SNLI ∆

ULMFiT[42] 4.60 5.01 0.80 2.16 29.98 / / /

BERTBASE
[13]* 5.40 5.25 0.71 2.28 30.06 / / /

BERTBASE 5.80 5.71 0.71 2.25 30.37 - 90.7 -

BERTVOTE K = 4( ) 5.60 5.41 0.67 2.03 29.44 5.44 91.2 5.50

BERTAVG K = 4( ) 5.68 5.53 0.68 2.03 30.03 4.07 90.8 1.07

BERTSE(ours) 5.82 5.59 0.65 2.19 30.48 2.50 90.8 1.07

BERTSDV(ours) 5.35 5.38 0.68 2.05 29.88 5.65 91.2 5.38

BERTSDA(ours) 5.29 5.29 0.68 2.04 29.88 6.26 91.2 5.38

∆Note: “*” indicates  using  extra  fine-tuning  strategies  and  data  preprocessing. “/” means  no  available  reported  result. “Avg. ”
means the average of relative changes.

 

Table  10.    Comparison with Distillation-Based Methods on the Development Set of the GLUE Benchmark

Model CoLA (Mcc) SST-2 (Acc) F1QQP (Acc/ ) MNLI-m/mm (Acc) QNLI (Acc)

BERTLARGE 61.8 93.5 91.1/88.0 86.3/86.2 92.4

MT-DNN[11] 63.5 94.3 91.9/89.2 87.1/86.7 92.9

KDMT-DNN [32] 64.5 94.3 91.9/89.4 87.3/87.3 93.2

BERTSDA(ours) 63.4 94.4 91.8/88.9 87.0/86.6 92.6

BERTSDV(ours) 63.1 94.3 92.0/89.1 87.2/86.8 92.8

BERTLARGE BERTLARGE KDNote: Our proposed methods are initialized by 24-layer . Results of , MT-DNN, and MT-DNN  are reported
in [32].
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performance boost compared with vanilla BERT, but

also gets the gains on classification benchmarks.  Our

proposed  approach  also  achieved  a  new  state-of-the-

art  result  on  the  SNLI  dataset  with  the  accuracy  of

92.6%. Meanwhile, our proposed approach is orthogo-

nal to the approaches with external data and knowl-

edge.  Therefore,  we  believe  that  more  sophisticated

hyperparameters  and  data  augmentation  can  further

boost our approach. 
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