

Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation

Yi-Ge Xu1, 2 (许一格), Student Member, CCF, Xi-Peng Qiu1, 2, * (邱锡鹏), Member, CCF
Li-Gao Zhou3 (周浬皋), and Xuan-Jing Huang1, 2 (黄萱菁), Member, CCF

1 School of Computer Science, Fudan University, Shanghai 200433, China
2 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
3 Huawei Technologies Co., Ltd., Hangzhou 310052, China

E-mail: ygxu18@fudan.edu.cn; xpqiu@fudan.edu.cn; zhouligao@huawei.com; xjhuang@fudan.edu.cn

Received October 28, 2020; accepted June 18, 2021.

Abstract Fine-tuning pre-trained language models like BERT have become an effective way in natural language pro-

cessing (NLP) and yield state-of-the-art results on many downstream tasks. Recent studies on adapting BERT to new

tasks mainly focus on modifying the model structure, re-designing the pre-training tasks, and leveraging external data and

knowledge. The fine-tuning strategy itself has yet to be fully explored. In this paper, we improve the fine-tuning of BERT

with two effective mechanisms: self-ensemble and self-distillation. The self-ensemble mechanism utilizes the checkpoints

from an experience pool to integrate the teacher model. In order to transfer knowledge from the teacher model to the stu-

dent model efficiently, we further use knowledge distillation, which is called self-distillation because the distillation comes

from the model itself through the time dimension. Experiments on the GLUE benchmark and the Text Classification

benchmark show that our proposed approach can significantly improve the adaption of BERT without any external data

or knowledge. We conduct exhaustive experiments to investigate the efficiency of the self-ensemble and self-distillation

mechanisms, and our proposed approach achieves a new state-of-the-art result on the SNLI dataset.

Keywords BERT, deep learning, fine-tuning, natural language processing (NLP), pre-training model

1 Introduction

The pre-trained language models including

BERT[1] and its variants (XLNet[2] and RoBERTa[3])

have been proven beneficial for many natural lan-

guage processing (NLP) tasks, such as text classifica-

tion, question answering[4] and natural language infer-

ence[5]. These pre-trained models have learned gener-

al-purpose language representations on a large

amount of unlabeled data. Therefore, adapting these

models to the downstream tasks can bring a good ini-

tialization and avoid training from scratch. There are

two common ways to utilize these pre-trained models

on downstream tasks: feature extraction (where the

pre-trained parameters are frozen), and fine-tuning

(where the pre-trained parameters are unfrozen and

fine-tuned)[6]. Although both ways can significantly

improve the performance of most downstream tasks,

the fine-tuning way usually achieves better results

than the feature extraction way[7]. Thus it is worth

paying attention to find a good fine-tuning strategy.

As a widely-studied pre-trained language model,

the potential of BERT can be further boosted by

modifying the model structure[8, 9] and re-designing

pre-training objectives[2, 3, 10, 11], data augmentation[12]

and multi-stage transfer[13]. However, the fine-tuning

strategy itself has yet to be fully explored.

In this paper, we investigate how to maximize the

utilization of BERT by a better fine-tuning strategy

without utilizing external data or knowledge. BERT

is usually fine-tuned by using the stochastic gradient

descent (SGD) method. In practice, the performance

of fine-tuning BERT is often sensitive to different

random seeds and the order of training data, especial-

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2020AAA0106700
and the National Natural Science Foundation of China under Grant No. 62022027.

*Corresponding Author

Xu YG, Qiu XP, Zhou LG et al. Improving BERT fine-tuning via self-ensemble and self-distillation. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 38(4): 853−866 July 2023. DOI: 10.1007/s11390-021-1119-0

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0

ly when the last training sample is noise. To alleviate

this, the ensemble method[14] is widely-used to com-

bine several fine-tuned based models since it can re-

duce overfitting and improve model generalization.

The ensemble BERT usually achieves superior perfor-

mance to the single BERT model. However, the main

disadvantages of the ensemble method are its model

size and training cost. The ensemble model needs to

keep multiple fine-tuned BERTs and has low compu-

tation efficiency and high storage cost.

As illustrated in Fig.1, we improve the fine-tun-

ing approach of BERT by introducing two mecha-

nisms: self-ensemble and self-distillation.

Self-Ensemble. Motivated by the success of wide-

ly-used ensemble models, we firstly propose a self-en-

semble method, in which the base models are the pre-

vious checkpoints within a single training process[15].

Then we compute the output through a majority

vote. To further reduce the model complexity of the

ensemble model, we use a more efficient ensemble

method, which combines several base models with pa-

rameter averaging rather than keep several base mod-

els. In summary, in order to compute the output log-

it, there are two self-ensemble methods: one for com-

puting the average of the result, and the other for

computing the average of parameters. Furthermore,

to break the temporal correlations by mixing more

and less recent checkpoints, we introduce an experi-

ence pool[16] to store the past checkpoints. In each

step, some models in the experience pool are sampled

to establish the teacher model via self-ensemble.

Self-Distillation. We further use knowledge distil-

lation[17] to improve fine-tuning efficiency. In this pa-

per, time step t indicates that the model parameters

have been optimized by t times, and time step 0 indi-

cates the initial parameters. At each time step in

training, the current BERT model (called student

model) is learned with two teachers: the gold labels

and self-ensemble model (called teacher model). With

the help of the teacher model, the student model is

more robust and accurate. Moreover, a better stu-

dent model further leads to a better teacher model. A

similar idea is also used in semi-supervised learning,

such as temporal ensembling[18] and mean teacher[19].

Different from them, our proposed self-distillation

aims to optimize the student model without external

data. More recently, ODC[20] and FastBERT[21] also

introduce self-distillation.

Different from previous self-distillation mecha-

nisms that distill knowledge from the following three

perspectives: previous best checkpoints[20], outputs of

other transformer layers[21], and the L2 distance to

the prediction with augmented data[19], our self-distil-

lation method distills knowledge from an ensemble of

past checkpoints of the student model.

In this paper, we propose a simple but effective

fine-tuning approach containing two mechanisms: self-

ensemble and self-distillation. The self-ensemble

mechanism includes two methods of parameter aver-

aging and logits voting respectively. The self-distilla-

tion mechanism include one method that distills

knowledge from the teacher model constructed by the

Label 

Output 

Output 

Input 

Experience Pool

Sample

Deposit

Teacher BERT

Self-Ensemble Self-Distillation

Task-Specific Objective

Weight Sum

Loss Computation

Forward Propagation

Parameters Updating

Other Operations

BERT 


BERT 


BERT 


...

BERT 

BERT

BERT

BERT 

BERT 

...







Lts

Lsd





θt

Lsd(·) Lts(·)
Fig.1. Illustration of our proposed fine-tuning approach. is the current parameters which have been optimized by t times. (x,y) is
the input training sample. and denote the self distillation loss and the task-specific loss, respectively. N and K are the size
of the experience pool and the size of the teacher model respectively.

854 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

self-ensemble mechanism. We evaluate our fine-tun-

ing approach on the GLUE benchmark and the classi-

fication benchmark. The experiments on the GLUE

benchmark[22] show our proposed approach has an av-

erage of 0.9-point performance boost compared with

vanilla BERT fine-tuning. The experiments on the

classification benchmark show our proposed

approach has the average of relative change of 6.26%.

To further analyze our approach, we conduct exhaus-

tive experiments including analyzing the training sta-

bility, the training curves, and the difference between

the two self-ensemble methods.

The contributions of this paper are as follows.

• We show the potential of BERT can be further

stimulated by a better fine-tuning approach without

leveraging external knowledge or data.

• We propose two self-ensemble methods: one for

computing the average of the result, and the other for

computing the average of parameters. The methods

can improve BERT without significantly decreasing

the training efficiency.

• We propose a self-distillation method with expe-

rience replay. This method can utilize the distillation

mechanism to transfer knowledge from teacher mod-

els constructed by the self-ensemble mechanism.

This paper is organized as follows: Section 2 re-

views some related work, Section 3 introduces our

proposed fine-tuning approach, Section 4 shows the

experimental setup and results, and Section 5 con-

cludes the paper.

2 Related Work

We briefly review three kinds of related work: pre-

trained language models, knowledge distillation for

NLP applications, and self-distillation.

2.1 Pre-Trained Language Models

It has become a new paradigm for NLP that first
pre-train language models on a large amount of unla-
beled data and then fine-tune the parameters in
downstream tasks[6]. It also makes a breakthrough in
many NLP tasks. Most recent pre-trained language
models (e.g., BERT[1], XLNet[2] and RoBERTa[3]) are
built with Transformer architecture[23].

As a wide-used model, BERT is pre-trained on the

masked language model (MLM) task and next sen-

tence prediction (NSP) task via a large cross-domain

unlabeled corpus. When fine-tuning on downstream

tasks, BERT takes an input of a sequence of no more

[CLS]

[SEP]

than 512 tokens and outputs the representation of the

sequence. The sequence has one segment for single-

sentence tasks or two for pairwise-sentence tasks. A

special token is added before segments which

contain the sequence representations. Another special

token is used for separating segments.

2.2 Knowledge Distillation for NLP

Applications

Since the pre-trained language models usually

have an extremely large number of parameters, fine-

tuning them on a downstream task usually needs a

high computation cost, which is difficult to deploy on

the resource-restricted devices. [17] proposes knowl-

edge distillation with a teacher-student architecture

to transfer the knowledge from a large teacher model

to a small student model by reproducing the behav-

iors of the teacher model. Following the teacher-stu-

dent architecture, recent studies[24–27] have designed

special objective functions to distill knowledge from

pre-trained language models.

2.3 Self-Distillation

Generally speaking, the teacher model is usually

well-trained and fixed in the processing of knowledge

distillation and has more parameters than the stu-

dent one, and the student model is trained with a ob-

jective function computed by the distillation mecha-

nism. Moreover, despite distilling from the teacher

model, the student one also can distill knowledge by

itself throughout an online knowledge distillation.

δ

On computer vision (CV), a similar idea is also

used in semi-supervised learning, such as temporal en-

sembling[18] and mean teacher[19]. During the semi-su-

pervised learning, the input data is augmented by a

disturbed . The objective of the mean teacher is to

minimize the L2 distance between the prediction of

the teacher model and that of the student model.

On NLP, online distillation from the best check-

point (ODC)[20] is applied on neural machine transla-

tion tasks. The teacher model of ODC is updated

when the checkpoint is the best on the validation da-

ta, and it is used to lead the training of the student

model when the validation performance declines.

Moreover, FastBERT[21] contains a self-distillation

loss function that distills knowledge from the outputs

of the last layer to the outputs of other layers.

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 855

2.4 Neural Network Ensemble

According to previous surveys[14, 28], the neural

network ensemble method can be separated into three

parts. The first part is about the individual network

generation method, including applying diverse input

data, redesigning ensemble objective function, and se-

lecting neural networks. The second part is about the

conclusion generation method, including the absolute

majority vote and the relative majority vote. The last

part is about the module ensemble method, including

fusing garnular computing (GrC).

3 Methodology of Fine-Tuning BERT

The fine-tuning of BERT usually aims to mini-

mize the cross-entropy loss on a specific task with the

stochastic gradient descent method. Due to the

stochastic nature, the performance of fine-tuning is of-

ten affected by the random orderings of the training

data, especially when the last training sample is noise.

Our fine-tuning method is motivated by the en-

semble method and knowledge distillation. It consists

of two models: a student model is the fine-tuning

BERT, and a teacher model is a self-ensemble of sev-

eral student models sampled from the experience pool.

At each time step, we further distill the knowledge of

the teacher model to the student model.

3.1 Fine-Tuning Vanilla BERT

h

[CLS]

y

BERT can deal with different natural language

tasks with task-specific output layers. For the GLUE

benchmark, BERT takes the final hidden state of

the first token as the representation of the in-

put sentence or sentence-pair. A simple softmax clas-

sifier is added to the top of BERT to predict the

probability of label :

p(y|h) = softmax(Wh),

W

Lts(·)
W

where is the task-specific parameter matrix. A

task-specific loss is used to fine-tune BERT as

well as jointly:

Lts(·) =
{
CE(ŷ, y), for classification tasks,
MSE(ŷ, y), for regression tasks,

(1)

ŷ = p(y|)

CE(·) MSE(·)
where h is predicted by the BERT model,

while and indicate cross-entropy loss

and mean square error respectively.

3.2 Self-Ensemble

θt (, y)

The basic idea of self-ensemble is inspired by the

famous proverb “look before you leap”. On vanilla

BERT fine-tuning, the parameters are optimized by

an objective function which only relies on current pa-

rameters as well as the training sample x . Pre-

vious work shows that experience replay benefits to

reinforcement learning[16, 29, 30]. Motivated by this, we

propose the self-ensemble mechanism throughout an

experience pool.

θt
t

Let denote parameters when fine-tuning BERT

at time step . The experience pool is defined as:

Θ̂t = {θ̂t,1, θ̂t,2, . . . , θ̂t,N},

N

θ̂t,i ∈ {θ0, θ1, . . . , θt} i ∈ [1, N]

where indicates the size of the experience pool, and

 for all .

Then, we randomly sample models from the expe-

rience pool to establish the teacher model:

Θ̃t = {θ̃t,1, θ̃t,2, . . . , θ̃t,K}, (2)

K ∈ [0, N]

θ̃t,i ∈ Θ̂t i ∈ [1, K] K = 0

where indicates the teacher size, and

 for all . Specially, indicates

the vanilla BERT fine-tuning mentioned in Subsec-

tion 3.1.

N θtIn the first steps, are filled into the experi-

ence pool. After that, one of the teacher models will

be removed from the experience pool when the pa-

rameters have been optimized. In order to keep the

diversity of the experience pool as much as possible,

instead of removing the oldest checkpoint, the re-

moved model is selected randomly:

Θ̂t+1 =
(
Θ̂t − {θ̃t,j}

)
∪ {θt+1},

θ̃t,jwhere indicates the removed model.

θi

K

In the training phase, each of the checkpoints

will participate the composition of the teacher model

at least once and with the expectation of times.

K Θ̃tAs mentioned above, models are selected as ,

which integrates the teacher model. As shown in

Fig.2, there are two different methods to establish the

teacher model: parameter averaging and logits voting.

Usually, parameter averaging has better computation-

al and memory efficiency than logits voting.

3.3 Self-Distillation with Experience Replay

Although the self-ensemble mechanism contains

an experience pool, it cannot transfer knowledge from

the teacher model to the student model directly.

856 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

Thus, we propose self-distillation mechanism to trans-

fer the “dark knowledge”[17].

Lsd(·)

Previous distillation models[24, 25, 31, 32] mainly fo-

cus on a two-stage training: 1) training the teacher

model, 2) fixing the teacher model and training the

student model. This training procedure leads to the

teacher model not being improved during the distilla-

tion procedure. But, our proposed self-ensemble mech-

anism utilizes the experience pool's checkpoints to

build the dynamic teacher model. With the help of

the teacher model, the student model will become

more robust and more accurate. With a better stu-

dent model, the teacher model at the future time step

is better either. In the training phase, a self-distilla-

tion loss is added to the objective function:

L(·) = Lts(·) + λLsd(·),

Lts(·) λ

θt
L(·)

where is defined at (1), and is the weight of

the self-distillation loss. The model parameters are

optimized by .

Following the two methods establishing the teach-

er model, there are two kinds of self-distillation loss:

self-distillation averaged, and self-distillation voted.

3.3.1 Self-Distillation Averaged (SDA)

BERTSDAWe first denote a fine-tuning method , in

which the teacher model is self-ensemble BERT with

parameter averaging.

Previous work has shown that averaging model

weights over training steps tends to produce a more

accurate model than using the final weights

directly[15]. Following this, the teacher model with pa-

rameter averaging can be computed by:

θ̄t =
1

K

K∑
k=1

θ̃t,k,

K θ̃t,kwhere and are defined in (2).

BERTSDA

y x

Similar to other self-distillation models[20, 21], the

self-distillation loss of does not rely on label

, but only relies on input . We use mean squared

error loss to estimate the logit-divergence between the

student model and the teacher model:

Lsd(x) = MSE
(
BERTϑt

(x), BERTθ̄t(x)
)
,

MSE

BERTθ(·)
θ

where denotes the mean squared error, and

 denotes the logits outputted by the BERT

models with parameters .

θ0 θt−1

N

K t

BERTSDA(K=t)

More specially, we use a moving average to record

the average of parameters from to , which

means the size of experience pool and the size of

the teacher model both keep moving with . For

consistency, we define this case as .

3.3.2 Self-Distillation Voted (SDV)

BERTSDV

As a comparison, we also propose an alternative

self-distillation method by establishing the

teacher model through logits voting.

BERTSDV

Different from parameter averaging, logits voting

needs to compute logits on each teacher model and

then sums the logits up. The self-distillation loss of

the method can be defined as:

Lsd(x) = MSE

(
BERTθt(x),

1

K

K∑
k=1

BERTθ̃t,k(x)

)
.

BERTSDV

BERTSDA BERTSDV

K BERTSDV

BERTSDA K = 1

Since the teacher model aggregates the informa-

tion of student models after every time step, it is usu-

ally more robust than a single student model without

self-distillation. Moreover, a better student model fur-

ther leads to a better teacher model. Generally, the

training efficiency of is lower than that of

 since needs to process the input

with teacher models. Specially, is the

same as when .

4 Experiments

We improve BERT fine-tuning via self-ensemble
and self-distillation. The vanilla fine-tuning method of

BERT is used as our baseline. Then we evaluate our
proposed fine-tuning method on the GLUE bench-
mark[22] and classification benchmarks to demon-

(b)(a)





 

BERT BERT

Average Voting

BERT BERT BERT BERT

 

Fig.2. Two methods to compute the output of the teacher model. (a) Parameter averaging. (b) Logits voting.

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 857

strate the feasibility of our self-distillation model.

4.1 Datasets

Our proposed method is evaluated on the GLUE

benchmark[22] and classification benchmarks. The

statistics of the benchmarks are shown in Table 1 and

Table 2 respectively. We use ``#'' to indicate ``the

number of''.

4.1.1 GLUE Benchmark

CoLA. The Corpus of Linguistic Acceptability

(CoLA) is a binary classification task to predict

whether the given English sentence is “linguistically

acceptable” or not[33].

SST-2. The Stanford Sentiment Treebank (SST-2)

is a corpus extracted from movie reviews with human

annotations of their sentiment[34]. The task aims to

predict whether the reviews are positive or negative.

MRPC. The Microsoft Research Paraphrase Cor-

pus (MRPC)[35] consists of sentence pairs automatical-

ly extracted from online news sources. The task aims

to predict the human annotations for whether the

sentences in the pair are semantically equivalent.

STS-B. The Semantic Textual Similarity Bench-

mark (STS-B)[36] is a collection of sentence pairs col-

lected from news headlines, video, image captions,

and other resources. The data is annotated through a

continuous score from 0 to 5, which denotes how simi-
lar the two sentences are. This task is evaluated by
Pearson correlation (P. corr) and Spearman correla-
tion (S. corr).

QQP. The Quora Question Pairs (QQP)① is a bi-
nary classification task aiming to predict whether two
questions asked on Quora are semantically equivalent.

MNLI. The Multi-Genre Natural Language Infer-
ence (MNLI)[37] corpus is a crowdsourced entailment
classification task with about 433k sentence pairs. It
has two development sets and two test sets: matched
(MNLI-m) and mismatched (MNLI-mm).

QNLI. The Question Natural Language Inference

(QNLI)[22] is a binary classification task built from the

Stanford Question Answering Dataset[4]. The task

aims to predict whether the question-sentence pair

contains the correct answer or not.
RTE. The Recognizing Textual Entailment

(RTE)[22] dataset is collected from a series of annual
challenges on textual entailment.

4.1.2 Classification Benchmark

IMDb. IMDb[39] is a binary sentiment analysis

dataset from the Internet Movie Database. The

dataset has 25 000 training examples and 25 000 vali-

dation examples. The task is to predict whether the

review text is positive or negative.

AG’s News. AG’s corpus[40] of the news articles on

Table 1. Summary Statistics of GLUE Benchmark

Dataset #Labels #Train Samples #Development Samples #Test Samples Metric

CoLA[33] 2 8 551 1 043 1 063 Matthews correlation coefficient[38]

SST-2[34] 2 67 349 872 1 821 Accuracy

MRPC[35] 2 3 668 408 1 725 F1Accuracy/

STS-B[36] 1 5 749 1 500 1 379 Pearson/Spearman correlation

QQP① 2 363 849 40 430 390 965 F1Accuracy/

MNLI-m[37] 3 392 702 9 815 9 796 Accuracy

MNLI-mm[37] 3 392 702 9 832 9 847 Accuracy

QNLI[22] 2 104 743 5 463 5 463 Accuracy

RTE[22] 2 2 490 277 3 000 Accuracy

Table 2. Summary Statistics of Six Widely-Studied Text Classification and Natural Language Inference (NLI) Datasets

Type Dataset #Labels #Train Samples #Development Samples #Test Samples

Text classification IMDb[39] 2 25 000 0 25 000

AG's News[40] 4 120 000 0 7 600

DBPedia[40] 14 560 000 0 70 000

Yelp Polarity[40] 2 560 000 0 38 000

Yelp Full[40] 5 650 000 0 50 000

NLI SNLI[5] 3 549 367 9 842 9 824

858 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

①http://static.hongbozhang.me/doc/STAT_441_Report.pdf, Jun. 2021.

http://static.hongbozhang.me/doc/STAT_441_Report.pdf
http://static.hongbozhang.me/doc/STAT_441_Report.pdf
http://static.hongbozhang.me/doc/STAT_441_Report.pdf
http://static.hongbozhang.me/doc/STAT_441_Report.pdf
http://static.hongbozhang.me/doc/STAT_441_Report.pdf

the web contains 496 835 categorized news articles.

The four largest classes from this corpus with only

the title and description fields are chosen to con-

struct the AG’s News dataset.

DBPedia. DBPedia[40] is a crowd-sourced commu-

nity effort that includes structured information from

Wikipedia. The DBPedia dataset is constructed by

picking 14 non-overlapping classes from DBPedia

2014 with only the title and abstract of each

Wikipedia article.

Yelp. The Yelp dataset is obtained from the Yelp

Dataset Challenge in 2015, built by [40]. There are

two classification tasks in this dataset: Yelp Full and

Yelp Polarity. Yelp Full predicts the full number of

stars (1 to 5) which are given by users, and the other

predicts a polarity label that is positive or negative.

SNLI. The Stanford Natural Language Inference

Corpus[5] is a collection of 570k human-written En-

glish sentence pairs manually labeled for balanced

classification with the labels on entailment, contradic-

tion, or neutral.

4.2 Implementation Details

N K λThe selection of hyperparameters , , and

which are defined in Section 3, can be seen in Subsec-

tion 4.3. The other hyperparameters of our proposed

methods are the same as those in the official BERT[1].

2× 10−5

1× 10−3

We use AdamW optimizer with the warm-up pro-

portion of 0.1, base learning rate for the BERT en-

coder of , base learning rate for the softmax

layer of , and dropout probability of 0.1. For

sequences of over 512 tokens, we truncate them and

choose head 512 as the model input. We fine-tune all

models on one RTX 2080Ti GPU. Due to the limita-

tion of GPU memory, the batch size is different from

4 (for classification tasks with long sequence length)

to 16 (for GLUE benchmark with short sequence

length) and the gradient accumulation step is 8.

BERTSDA

N = K = 5

Taking IMDb as an example, with

 spends about 1.5x training time com-

pared with the vanilla fine-tuning, while it is about

BERTSDV

N = K = 5

2.8x–3x training times in the case of with

.

4.3 Model Selection

BERTSDA BERTSDV

N K

λ

As shown in Subsection 3.2 and Subsection 3.3,

there are three main hyperparameters in our fine-tun-

ing methods and : size of the expe-

rience pool , size of the teacher model , and self-

distillation weight .

In this subsection, we mainly choose four repre-

sentative tasks to evaluate the effects of our hyperpa-

rameters: a task for single-sentence classification

(SST-2), a task for pairwise-sentence classification

(MRPC), a task for text-similarity regression (STS-

B), and a task for relevance ranking (QNLI). In the

tables of this paper, the best results are in bold.

N4.3.1 Size of Experience Pool

N K = 3 λ = 0.1

N

In this subsection, we will explore the effects of

. For convenience, we firstly set and .

Then we change the size of experience pool . Re-

sults are shown in Table 3.

N

BERTSDA BERTSDV

N = 5

N = 5

According to the experimental result, some tasks

are not sensitive to the value of , while the other

tasks are sensitive. Similar observations can be found

on both and . For sensitive tasks

such as SST-2 and MRPC, our fine-tuning method

usually gets a good result when . Therefore, we

set in the following experiments.

K4.3.2 Size of Teacher Model

N = 5 λ = 0.1

In this subsection, we choose different sizes of the

teacher model and evaluate our model in four tasks.

Following Subsection 4.3.1, we set and .

Results are shown in Table 4.

K

From the experimental results, the size of the

teacher model is sensitive to datasets. Thus, we se-

lect the best for each task in the following experi-

ment.

Table 3. Effects (%) of N on the Development Set of Four Representative Tasks

Task Metric BERTSDV BERTSDA

N = 3 N = 4 N = 5 N = 8 N = 10 N = 3 N = 4 N = 5 N = 8 N = 10

SST-2 Accuracy 93.3 93.2 93.5 93.0 92.8 93.3 92.8 93.5 92.9 92.8

MRPC F1Accuracy/ 86.3 87.5 89.0 88.2 86.5 86.2 86.3 88.2 86.5 87.3

STS-B P. corr 90.0 90.0 90.0 90.0 90.0 89.9 89.9 90.0 89.9 90.0

S. corr 89.7 89.7 89.7 89.6 89.7 89.5 89.6 89.6 89.5 89.6

QNLI Accuracy 91.2 91.4 91.3 91.2 91.2 91.5 91.3 91.8 91.5 91.4

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 859

λ4.3.3 Self-Distillation Weight

λ

N = 5 K

In this part, we conduct experiments to explore

the effects of . Following Subsection 4.3.1 andSub-

section 4.3.2, we set and choose different .

λ ∈ [0.1, 0.3]

λ ∈ [1.0, 1.5]

λ [1.0, 1.5]

λ

[0.1, 0.3]

As shown in Fig.3, has better results

in STS-B than the other ranges, while

performs better than the other ranges in IMDb. Our

observation on loss curve (see Subsection 4.5.2) shows

that the norms between task-specific loss and self dis-

tillation loss should apply within a suitable ratio.

Therefore, should be set in for large-scaled

tasks, such as IMDb, SST-2, and so on. In contrast,

should be set in for the task with limited

training examples, such as MRPC, STS-B, and so on.

4.4 Model Performance

We explored the selection of hyperparameters in

Subsection 4.3. In this subsection, we will evaluate

our proposed fine-tuning method for the BERT and

RoBERTa models on the GLUE benchmark and the

classification benchmarks.

4.4.1 Effects on Fine-Tuning BERT-Base

In this subsection, we use 12-layer Transformer

encoders (BERT-Base) as our mainly component and

evaluate our methods on the GLUE benchmark.

As shown in Table 5 and Table 6, where Mcc

means Matthew's correlation coefficient and Acc

means accuracy, our self-ensemble and self-distilla-

tion method improve fine-tuned models on the GLUE

benchmark. We firstly re-implement fine-tuning vanil-

la BERT and submit it to the GLUE server as our

baseline. Compared with the baseline, our self-ensem-

ble and self-distillation method has a 0.9-point perfor-

mance boost on the test set of the GLUE benchmark.

4.4.2 Effects on Fine-Tuning BERT-Large and

RoBERTa-Large

K

We also investigate whether self-distillation has

similar findings for the BERTLARGE (BERT-L) and

RoBERTaLARGE (RoBERTa-L) model, containing 24

Transformer layers. For convenience, we set two dif-

ferent sizes of the teacher model for comparison.

For IMDb and AG's News, we report test error rate

(%). For SNLI, we report accuracy (%). XLNet has

KTable 4. Effects (%) of on the Development Set of Four Representative Tasks

Task Metric BERTSDV BERTSDA

K = 1 K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

SST-2 Accuracy 92.9 93.5 93.5 93.0 93.2 93.1 93.5 92.9 93.1

MRPC F1Accuracy/ 87.0 88.1 89.0 87.8 86.7 86.8 87.3 87.2 87.2

STS-B P. corr 90.1 90.0 90.0 90.0 90.2 90.0 90.0 90.0 90.1

S. corr 89.8 89.7 89.7 89.7 89.8 89.6 89.6 89.6 89.7

QNLI Accuracy 91.5 91.2 91.3 91.4 91.4 91.7 91.8 91.5 91.7

0.1 0.2 0.3 0.4 0.5 0.8 1.0 1.5 2.0 3.0

89.8

90.0

90.2

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n
 (

%
)

BERTBASE

BERTSDV(=1)

BERTSDV(=)

BERTSDA(=)

BERTSDA(=-1)

BERTBASE

BERTSDA(=1)

BERTSDA(=5)

BERTSDV(=5)

(a)

0.1 0.2 0.5 1.0 1.5 2.0 3.0 4.0 5.0
5.2

5.4

5.6

5.8

6.0

6.2

T
e
st

 E
rr

o
r

R
a
te

 (
%

)

(b)

 

λFig.3. Comparison of different on: (a) STS-B (development set) and (b) IMDb (test set). T: the total number of iterations.

860 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

BERT-LSDA RoBERTa-LSDA

∆ BERT-LSDA
RoBERTa-LSDA 7.02% 5.81%

BERT-LSDV RoBERTa-LSDV

BERT-LSDV RoBERTa-LSDV
6.59% 9.76%

the state-of-the-art result on text classification tasks.

MT-DNN fine-tunes BERT with multi-task learning.

CA-MTL fine-tunes RoBERTa with multi-task learn-

ing. In Table 7, self-distillation also gets a significant

gain while fine-tuning BERT-L. On two text classifi-

cation tasks, and give better

results than self-distillation-voted models. The aver-

age improvement (Avg.) of and

 is and , respectively. For the

NLI task, and give better re-

sults than self-distillation-average models. The aver-

age improvement of and are

 and , respectively.

BERT-L

RoBERTa-L

Moreover, although our self-distillation mecha-

nism does not leverage the external data or knowl-

edge, it also gives a comparable performance of MT-

DNN[11] on and outperforms CA-MTL[41] on

. MT-DNN and CA-MTL fine-tune BERT

and RoBERTa under the multi-task learning frame-

work respectively. In SNLI, MT-DNN achieves the

best result except the RoBERTa models, and CA-

MTL is the previous state-of-the-art model.

4.5 Model Analysis

In this subsection, we will briefly analyze our pro-

posed fine-tuning method in two perspectives: train-

ing stability and convergence curves.

4.5.1 Training Stability

Fine-tuning a pre-trained model on downstream

tasks prevents training a model from scratch, which

usually requires a high computation power. Mean-

while, distinct random seeds can lead to substantially

different results when fine-tuning BERT even with

the same hyperparameters. In our fine-tuning method,

a self-distillation loss function is added to the objec-

tive function. This function can be regarded as a con-

straint on regularization. Thus, we assume that the

parameter averaging and logits voting can increase

Table 5. Model Comparison (%) on the Development Set of the GLUE Benchmark

Model CoLA
(Mcc)

SST-2
(Acc)

MRPC
(Acc/F1)

STS-B
(P./S. Corr)

QQP
(Acc/F1)

MNLI-m/mm
(Acc)

QNLI
(Acc)

RTE
(Acc)

BERTBASE
[1] - 92.7 86.7/- - - 84.4/- 88.4 -

BERTBASE-ReImp 56.7 92.7 85.7/- 89.9/89.6 91.2/88.2 84.4/84.2 91.0 67.1

BERTSDA(ours) 60.7 93.5 89.0/- 90.2/89.8 91.4/88.4 84.8/85.2 91.8 71.8

BERTSDV(ours) 60.5 93.5 88.2/- 90.0/89.7 91.4/88.4 85.1/85.1 91.5 72.2

Note: “-” means not reported in [1]. “ReImp” indicates our implementation. We report results on the development set with the best
hyperparameters.

Table 6. Model Comparison (%) on the Test Set of the GLUE Benchmark

Model CoLA
(Mcc)

SST-2
(Acc)

MRPC
(Acc/F1)

STS-B
(P./S. Corr)

QQP
(Acc/F1)

MNLI-m/mm
(Acc)

QNLI
(Acc)

RTE
(Acc)

Avg. Score

BERTBASE
[1] 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 79.7

BERTBASE-ReImp 52.2 93.4 88.3/84.8 86.7/85.6 71.0/89.2 84.3/83.4 90.5 66.5 79.6

BERTSDA(ours) 53.1 94.4 88.7/84.5 87.0/86.0 72.4/89.6 85.0/84.3 91.3 68.8 80.6

BERTSDV(ours) 52.6 94.6 88.4/84.4 86.9/85.7 72.5/89.7 85.3/84.3 91.4 68.9 80.5

Table 7. Comparison of Different 24-Layer Models

Model Test Error Rate (%) ∆Avg. (%) Accuracy of ∆ (%)

IMDb AG's News SNLI (%)

XLNet[2] 3.79 4.49 / / /

MT-DNN[11] / / / 91.6 /

CA-MTL[41] / / / 92.1 /

BERT-L (our implementation) 4.98 5.45 - 90.9 -

RoBERTa-L (our implementation) 3.88 5.33 - 91.8 -

BERT-LSDV 4.66 5.21 5.62 91.5 6.59

BERT-LSDA 4.58 5.15 7.02 91.4 5.49

RoBERTa-LSDV 3.58 5.03 5.62 92.6 9.76

RoBERTa-LSDA 3.48 5.02 5.81 92.5 8.54

Note: “/” indicates “not reported in the original paper”. “-” means the baseline.

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 861

the ability of generalization and reduce the variance

of model performance. In this subsection, we conduct

experiments to explore the effect of data order during

fine-tuning and prove our assumption.

θ0

This experiment is conducted with a set of data

order seeds. A data order can be regarded as a sam-

ple of the set of permutations of the training data. In

this subsection, the same is used to initialize the

weight matrices of all models, and the data orders are

different. We run 10 times for each fine-tuning strate-

gy and record the results as shown in Table 8.

Table 8. Statistics of Evaluation Metrics in STS-B Within
10 Runs

Model Metric Max Min Avg. Std.

BERTBASE P. Corr 90.05 89.66 89.86 1.537× 10−1

S. Corr 89.64 89.30 89.48 1.249× 10−1

BERTSDA(K = 1) P. Corr 90.15 89.79 89.98 9.910× 10−2

S. Corr 89.79 89.48 89.62 8.710× 10−2

BERTSDA(K = 5) P. Corr 90.13 89.92 90.03 6.870× 10−2

S. Corr 89.74 89.53 89.63 7.330× 10−2

BERTSDV(K = 5) P. Corr 90.16 89.86 90.00 1.015× 10−1

S. Corr 89.77 89.43 89.60 1.104× 10−1

Statistics of evaluating results have shown that

our method has better performance and a smaller

variance than the vanilla BERT fine-tuning. Since our

self-ensemble mechanism inherits the property of the

ensemble model, it is less sensitive to the data order

than vanilla BERT fine-tuning.

4.5.2 Convergence Curves

In this subsection, we conduct experiments to an-

alyze the effects of our models. The converge curve of

BERTBASE

89.60 89.63

the training phase is shown in Fig.4. According to the

experimental results, fine-tuning cannot get

significant improvement in the last two epochs (from

 to). But with the help of the self-ensem-

ble and the self-distillation mechanisms, the model

keeps improving on the last two epochs. Similar ob-

servations can also be seen at IMDb.

Lts(·) Lsd(·)

To further analyze the reason for this observation,

we also record the curve of the task-specific loss func-

tion and the self-distillation loss function

on three datasets. As shown in Fig.5, the self-distilla-

tion loss increases at the beginning of the training

phase. As the training processes, the self-distillation

loss tends to oscillate. After that, the task-specific loss

tends to converge on the last training steps, which

cannot bring significant improvements. Therefore,

adding the self-distillation loss function can bring

more knowledge, continually improving the model

even when the task-specific loss function cannot bring

significant gains.

λ

However, the shapes of the loss function curves

are also related to the characteristics of the three

datasets. For MRPC and RTE, the number of train-

ing examples is limited, which leads to a significant

oscillation of self-distillation loss. Due to this observa-

tion, the weight of self-distillation loss should be re-

lated to the scale of the training set.

4.5.3 Ablation Study

In this subsection, we will compare our self-ensem-

ble and self-distillation methods with other fine-tun-

ing methods.

BERTBASE. This method fine-tunes BERT-Base

1 2 3 4 5 6

88.0

88.5

89.0

89.5

90.0

Epoch

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n
 (

%
)

(a)

1 2 3 4 5 6

6

7

8

Epoch

T
e
st

 E
rr

o
r

R
a
te

 (
%

)

(b)

BERTBASE

BERTSDA(=1)

BERTSDA(=5)

BERTSDV(=5)

BERTBASE

BERTSDA(=-1)

BERTSDV(=5)

BERTSDA(=5)

Fig.4. Convergence curves for different fine-tuning methods on (a) the development set of STS-B and (b) the test set of IMDb.

862 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

without any extra fine-tuning strategy or external da-

ta. It is our baseline model.

BERTVOTE K. This method fine-tunes different

BERT models with different initial random seeds and

then sums up their probability distribution.

BERTAVG K. This method fine-tunes different

BERT models with different initial random seeds and

then calculates the average of their parameters. The

average parameters are used to conduct a new BERT

model in the evaluation phase.

BERTSE BERTSDA BERTSDV

BERTSE

BERTSDA BERTSDV

, , and . In this paper,

we originally propose these methods. indi-

cates only using self-ensemble (see Subsection 3.2).

 and indicate self-distillation-aver-

age (Subsection 3.3.1) and self-distillation-voted (Sub-

section 3.3.2), respectively.

BERTBASE

BERTVOTE BERTAVG

BERTSE

BERTVOTE

As shown in Table 9, “ ” indicates our

baseline model, “ ” and “ ” indi-

cate traditional ensembles, “ ” indicates the

method with only self-ensemble. In neural network en-

semble, one of the most widely-used ensemble meth-

ods is the conclusion generation method that includes

the absolute majority vote and the relative majority

vote. Therefore the comparison with “ ” can

be regarded as that with ensemble models. Compared

with our baseline, self-ensemble has a slightly im-

provement in classification tasks. However, the

method with only self-ensemble is worse than the tra-

ditional ensemble methods, which is the reason why

we need self-distillation to further explore the poten-

tial of self-ensemble. In summary, on text classifica-

tion tasks, SDA and SDV have a higher improve-

ment on average (5.65% and 6.26%) versus tradition-

al ensembles (5.44% and 4.07%).

4.5.4 Discussion

In this subsection, we will provide some discus-

sion about our proposed self-ensemble and self-distil-

lation methods.

BERT SDA BERT SDV

BERTSDV

BERTSDA

Difference Between and . We

evaluate our proposed methods (SDA and SDV) on

classification benchmarks and the GLUE benchmark.

The results are shown in Table 9 and Table 6, respec-

tively. Generally, NLI-like tasks (e.g., SNLI, QNLI,

QQP, MNLI, and RTE) are pairwise-sentences classi-

fication tasks, in which usually obtains bet-

ter performance. On the other hand, in single-sen-

tence classification tasks (e.g., IMDb, AG's News,

DBPedia, Yelp), usually obtains better per-

0.1k 0.5k 1.0k 1.3k
Number of Training Steps

L
o
ss

(a)

0.1k 1.0k 2.0k 3.0k 4.0k 5.0k 6.0k
Number of Training Steps

L
o
ss

(b)

4k 40k 80k 120k 156k
Number of Training Steps

L
o
ss

(c)

0.5k 5.0k 10.0k 15.0k 20.0k 25.0k 30.0k 37.5k
Number of Training Steps

L
o
ss

(d)

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

Lts.
Lsd.

Lts.
Lsd.

Lts.
Lsd.

Lts.
Lsd.

Fig.5. Loss curve of BERTSDA(K = 1) on four datasets. (a) MRPC. (b) RTE. (c) QNLI. (d) IMDb.

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 863

formance. Based on this observation, we conclude

that the pairwise-sentences classification tasks re-

quire more attention on segment-level interactions,

which may be declined when applying parameter av-

erage.

BERTBASE BERTSDA

Why Not the Latest Checkpoints? In order to

prove the necessity of the experience pool, we con-

duct experiments on the AG's News dataset by using

the latest checkpoints. In this experiment, the experi-

ence pool will remove the oldest checkpoint when a

new checkpoint is added. The experimental result

shows that the latest checkpoints perform worse: it

gets the test error rate of 5.60% when the baseline of

 is 5.71% and the result of is

5.29%. We observe that the difference of the latest

checkpoints is limited because the optimization pro-

cess would only change the parameter matrices slight-

ly. Therefore, the latest checkpoints can be summa-

rized in similar spaces, which reduce the diversity of

the experience pool.

KD

KD

Comparison with Distillation-Based Methods. In

order to compare the self-distillation with other distil-

lation-based models, we conduct experiments in some

GLUE datasets. In this experiment, we compare our

model with MT-DNN[11] and MT-DNN [32]. Results

are shown in Table 10. In some small datasets such as

CoLA, multi-task learning as well as knowledge distil-

lation obtain a higher gain; therefore MT-DNN has

KD

KD

KD

BERTSDA BERTSDV

an obvious improvement. In some large datasets such

as SST-2, models learn much knowledge from the

training set; therefore MT-DNN cannot provide an

obvious improvement. Different from MT-DNN , our

proposed fine-tuning approach can provide improve-

ments not only on small datasets but also on large

datasets. In summary, our proposed fine-tuning ap-

proach gives a comparable performance of MT-DNN

and MT-DNN on large datasets such as SST-2 and

QNLI, while only obtains a similar performance with

MT-DNN on small datasets such as CoLA. Due to

the lack of external knowledge and the training data,

the performances of and are ac-

ceptable compared with distillation-based models.

5 Conclusions

In this paper, we proposed a simple but effective

fine-tuning approach for BERT without external

knowledge or data. Specifically, we introduced two

mechanisms: self-ensemble and self-distillation. The

self-ensemble mechanism introduces the experience re-

play and establishes the teacher model with parame-

ter averaging or logits voting. With self-distillation

which leads to better teacher models, the students

benefit from previous experience and become more ro-

bust. Experiments on the GLUE benchmark showed

that our fine-tuning approach not only has a 0.9-point

BERTBASETable 9. Comparison of Fine-Tuning the BERT-Base () Model

Model Test Error Rate (%) Accuracy (%)

IMDb AG's News DBPedia Yelp Polarity Yelp Full ∆Avg. SNLI ∆

ULMFiT[42] 4.60 5.01 0.80 2.16 29.98 / / /

BERTBASE
[13]* 5.40 5.25 0.71 2.28 30.06 / / /

BERTBASE 5.80 5.71 0.71 2.25 30.37 - 90.7 -

BERTVOTE K = 4() 5.60 5.41 0.67 2.03 29.44 5.44 91.2 5.50

BERTAVG K = 4() 5.68 5.53 0.68 2.03 30.03 4.07 90.8 1.07

BERTSE(ours) 5.82 5.59 0.65 2.19 30.48 2.50 90.8 1.07

BERTSDV(ours) 5.35 5.38 0.68 2.05 29.88 5.65 91.2 5.38

BERTSDA(ours) 5.29 5.29 0.68 2.04 29.88 6.26 91.2 5.38

∆Note: “*” indicates using extra fine-tuning strategies and data preprocessing. “/” means no available reported result. “Avg. ”
means the average of relative changes.

Table 10. Comparison with Distillation-Based Methods on the Development Set of the GLUE Benchmark

Model CoLA (Mcc) SST-2 (Acc) F1QQP (Acc/) MNLI-m/mm (Acc) QNLI (Acc)

BERTLARGE 61.8 93.5 91.1/88.0 86.3/86.2 92.4

MT-DNN[11] 63.5 94.3 91.9/89.2 87.1/86.7 92.9

KDMT-DNN [32] 64.5 94.3 91.9/89.4 87.3/87.3 93.2

BERTSDA(ours) 63.4 94.4 91.8/88.9 87.0/86.6 92.6

BERTSDV(ours) 63.1 94.3 92.0/89.1 87.2/86.8 92.8

BERTLARGE BERTLARGE KDNote: Our proposed methods are initialized by 24-layer . Results of , MT-DNN, and MT-DNN are reported
in [32].

864 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

performance boost compared with vanilla BERT, but

also gets the gains on classification benchmarks. Our

proposed approach also achieved a new state-of-the-

art result on the SNLI dataset with the accuracy of

92.6%. Meanwhile, our proposed approach is orthogo-

nal to the approaches with external data and knowl-

edge. Therefore, we believe that more sophisticated

hyperparameters and data augmentation can further

boost our approach.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Devlin J, Chang M W, Lee K et al. BERT: Pre-training

of deep bidirectional transformers for language under-

standing. In Proc. the 2019 Conference of the North

American Chapter of the Association for Computational

Linguistics (NAACL): Human Language Technologies,

Jun. 2019, pp.4171–4186. DOI: 10.18653/v1/N19-1423.

[1]

 Yang Z L, Dai Z H, Yang Y M et al. XLNet: Generalized

autoregressive pretraining for language understanding. In

Proc. the 33rd International Conference on Neural Infor-

mation Processing Systems (NIPS), Dec. 2019, Article No.

517.

[2]

 Liu Y H, Ott M, Goyal N et al. RoBERTa: A robustly

optimized BERT pretraining approach. arXiv: 1907.11692,

2019. https://arxiv.org/abs/1907.11692, Aug. 2023.

[3]

 Rajpurkar P, Zhang J, Lopyrev K et al. SQuAD: 100,

000+ questions for machine comprehension of text. In

Proc. the 2016 Conference on Empirical Methods in Natu-

ral Language Processing (EMNLP), Nov. 2016,

pp.2383–2392. DOI: 10.18653/v1/D16-1264.

[4]

 Bowman S R, Angeli G, Potts C et al. A large annotated

corpus for learning natural language inference. In Proc.

the 2015 EMNLP, Sept. 2015, pp.632–642. DOI: 10.

18653/v1/D15-1075.

[5]

 Qiu X P, Sun T X, Xu Y G et al. Pre-trained models for

natural language processing: A survey. Science China

Technological Sciences, 2020, 63(10): 1872–1897. DOI: 10.

1007/s11431-020-1647-3.

[6]

 Peters M E, Ruder S, Smith N A. To tune or not to tune?

Adapting pretrained representations to diverse tasks. In

Proc. the 4th Workshop on Representation Learning for

NLP, Aug. 2019, pp.7–14. DOI: 10.18653/v1/W19-4302.

[7]

 Stickland A C, Murray I. BERT and PALs: Projected at-

tention layers for efficient adaptation in multi-task learn-

ing. In Proc. the 36th International Conference on Ma-

chine Learning (ICML), Jun. 2019, pp.5986–5995.

[8]

 Houlsby N, Giurgiu A, Jastrzebski S et al. Parameter-effi-

cient transfer learning for NLP. In Proc. the 36th ICML,

Jun. 2019, pp.2790–2799.

[9]

 Dong L, Yang N, Wang W H et al. Unified language

model pre-training for natural language understanding

and generation. arXiv: 1905.03197, 2019. https://arxiv.org/

abs/1905.03197, Aug. 2023.

[10]

 Liu X D, He P C, Chen W Z et al. Multi-task deep neu-

ral networks for natural language understanding. arXiv:

1901.11504, 2019. https://arxiv.org/pdf/1901.11504.pdf,

Aug. 2023.

[11]

 Raffel C, Shazeer N, Roberts A et al. Exploring the lim-

its of transfer learning with a unified text-to-text trans-

former. arXiv: 1910.10683, 2019. https://arxiv.org/abs/

1910.10683, Aug. 2023.

[12]

 Sun C, Qiu X P, Xu Y G et al. How to fine-tune BERT

for text classification? In Proc. the 18th China National

Conference on Chinese Computational Linguistics, Oct.

2019, pp.194–206. DOI: 10.1007/978-3-030-32381-3_16.

[13]

 Li H, Wang X S, Ding S F. Research and development of

neural network ensembles: A survey. Artificial Intelli-

gence Review, 2018, 49(4): 455–479. DOI: 10.1007/s10462-

016-9535-1.

[14]

 Polyak B T, Juditsky A B. Acceleration of stochastic ap-

proximation by averaging. SIAM Journal on Control and

Optimization, 1992, 30(4): 838–855. DOI: 10.1137/0330046.

[15]

 Schaul T, Quan J, Antonoglou I et al. Prioritized experi-

ence replay. In Proc. the 4th International Conference on

Learning Representations (ICLR), May 2016.

[16]

 Hinton G, Vinyals O, Dean J. Distilling the knowledge in

a neural network. arXiv: 1503.02531, 2015. https://arxiv.

org/abs/1503.02531, Aug. 2023.

[17]

 Laine S, Aila T. Temporal ensembling for semi-super-

vised learning. In Proc. the 5th ICLR, Apr. 2017.

[18]

 Tarvainen A, Valpola H. Mean teachers are better role

models: Weight-averaged consistency targets improve se-

mi-supervised deep learning results. In Proc. the 31st

NIPS, Dec. 2017, pp.1195–1204.

[19]

 Wei H R, Huang S J, Wang R et al. Online distilling from

checkpoints for neural machine translation. In Proc. the

2019 NAACL: Human Language Technologies, Jun. 2019,

pp.1932–1941. DOI: 10.18653/v1/N19-1192.

[20]

 Liu W J, Zhou P, Wang Z R et al. FastBERT: A self-dis-

tilling BERT with adaptive inference time. In Proc. the

58th Annual Meeting of the Association for Computation-

al Linguistics (ACL), Jul. 2020, pp.6035–6044. DOI: 10.

18653/v1/2020.acl-main.537.

[21]

 Wang A, Singh A, Michael J et al. GLUE: A multi-task

benchmark and analysis platform for natural language un-

derstanding. In Proc. the 2018 EMNLP Workshop Black-

boxNLP: Analyzing and Interpreting Neural Networks for

NLP, Nov. 2018, pp.353–355. DOI: 10.18653/v1/W18-

5446.

[22]

 Vaswani A, Shazeer N, Parmar N et al. Attention is all

you need. In Proc. the 31st NIPS, Dec. 2017,

pp.5998–6008.

[23]

 Sanh V, Debut L, Chaumond J et al. DistilBERT, a dis-

tilled version of BERT: Smaller, faster, cheaper and

lighter. arXiv: 1910.01108, 2019. https://arxiv.org/abs/

1910.01108, Aug. 2023.

[24]

 Jiao X Q, Yin Y C, Shang L F et al. TinyBERT: Distill-

ing BERT for natural language understanding. In Proc.

the 2020 Findings of the Association for Computational

Linguistics, Nov. 2020, pp.4163–4174. DOI: 10.18653/v1/

2020.findings-emnlp.372.

[25]

Yi-Ge Xu et al.: Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation 865

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://arxiv.org/abs/1905.03197
https://arxiv.org/abs/1905.03197
https://arxiv.org/pdf/1901.11504.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1007/s10462-016-9535-1
https://doi.org/10.1137/0330046
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/N19-1192
https://doi.org/10.18653/v1/N19-1192
https://doi.org/10.18653/v1/N19-1192
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

 Sun Z Q, Yu H K, Song X D et al. MobileBERT: A com-

pact task-agnostic BERT for resource-limited devices. In

Proc. the 58th ACL, Jul. 2020, pp.2158–2170. DOI: 10.

18653/v1/2020.acl-main.195.

[26]

 Wang W H, Wei F R, Dong L et al. MINILM: Deep self-

attention distillation for task-agnostic compression of pre-

trained transformers. In Proc. the 34th NIPS, Dec. 2020,

Article No. 485.

[27]

 Ganaie M A, Hu M H, Malik A K et al. Ensemble deep

learning: A review. Eng. Appl. Artif. Intell., 2022, 105:

105–151. DOI: 10.1016/j.engappai.2022.105151.

[28]

 Andrychowicz M, Wolski F, Ray A et al. Hindsight expe-

rience replay. In Proc. the 31st NIPS, Dec. 2017,

pp.5055–5065.

[29]

 Horgan D, Quan J, Budden D et al. Distributed priori-

tized experience replay. In Proc. the 6th ICLR, Apr.

30–May 3, 2018.

[30]

 Sun S Q, Cheng Y, Gan Z et al. Patient knowledge distil-

lation for BERT model compression. In Proc. the 2019

Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on

Natural Language Processing, Nov. 2019, pp.4323–4332.
DOI: 10.18653/v1/D19-1441.

[31]

 Liu X D, He P C, Chen W Z et al. Improving multi-task

deep neural networks via knowledge distillation for natu-

ral language understanding. arXiv: 1904.09482, 2019.

https://arxiv.org/abs/1904.09482, Aug. 2023.

[32]

 Warstadt A, Singh A, Bowman S R. Neural network ac-

ceptability judgments. Trans. Association for Computa-

tional Linguistics, 2019, 7: 625–641. DOI: 10.1162/tacl_a_
00290.

[33]

 Socher R, Perelygin A, Wu J et al. Recursive deep mod-

els for semantic compositionality over a sentiment Tree-

bank. In Proc. EMNLP, Oct. 2013, pp.1631–1642.

[34]

 Dolan W B, Brockett C. Automatically constructing a

corpus of sentential paraphrases. In Proc. the 3rd Interna-

tional Workshop on Paraphrasing, Oct. 2005, pp.9–16.

[35]

 Cer D, Diab M, Agirre E et al. SemEval-2017 task 1: Se-

mantic textual similarity-multilingual and cross-lingual fo-

cused evaluation. arXiv: 1708.00055, 2017. https://arxiv.

org/abs/1708.00055, Aug. 2023.

[36]

 Williams A, Nangia N, Bowman S. A broad-coverage

challenge corpus for sentence understanding through in-

ference. In Proc. the 2018 NAACL: Human Language

Technologies, Jun. 2018, pp.1112–1122. DOI: 10.18653/

v1/N18-1101.

[37]

 Matthews B W. Comparison of the predicted and ob-

served secondary structure of T4 phage lysozyme.

Biochimica et Biophysica Acta (BBA)-Protein Structure,

1975, 405(2): 442–451. DOI: 10.1016/0005-2795(75)90109-9.

[38]

 Maas A L, Daly R E, Pham P T et al. Learning word

vectors for sentiment analysis. In Proc. the 49th Annual

Meeting of the Association for Computational Linguistics:

Human Language Technologies, Jun. 2011, pp.142–150.

[39]

 Zhang X, Zhao J B, LeCun Y. Character-level convolu-

tional networks for text classification. In Proc. the 28th

NIPS, Dec. 2015, pp.649–657.

[40]

 Pilault J, Elhattami A, Pal C. Conditionally adaptive

multi-task learning: Improving transfer learning in NLP

using fewer parameters & less data. arXiv: 2009.09139,

2020. https://arxiv.org/abs/2009.09139, Aug. 2023.

[41]

 Howard J, Ruder S. Universal language model fine-tun-

ing for text classification. In Proc. the 56th ACL, Jul.

2018, pp.328–339. DOI: 10.18653/v1/P18-1031.

[42]

Yi-Ge Xu received his B.E. degree

in computer science and technology

from Shandong University, Jinan, in

2018. Currently he is a Master stu-

dent in School of Computer Science,

Fudan University, Shanghai. His re-

search interests include natural lan-

guage processing and deep learning.

Xi-Peng Qiu received his B.S. de-

gree in chemistry and his Ph.D. de-

gree in computer science from Fudan

University, Shanghai, in 2001 and

2006 respectively. Currently he is a

professor in School of Computer Sci-

ence, Fudan University, Shanghai. His

research interests include natural language processing

and deep learning.

Li-Gao Zhou received his B.E. de-

gree in electrical engineering from

Huazhong University of Science and

Technology, Wuhan, in 2007, and his

M.E. degree in electrical engineering

from Tsinghua University, Beijing, in

2010. Currently he is an expert in

HUAWEI. His research interests include natural lan-

guage processing and deep learning.

Xuan-Jing Huang received her B.S.

and Ph.D. degrees in computer sci-

ence from Fudan University, Shang-

hai, in 1993 and 1998 respectively.

Currently she is a professor in School

of Computer Science, Fudan Universi-

ty, Shanghai. Her research interests

include natural language processing and deep learning.

866 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://arxiv.org/abs/1904.09482
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://arxiv.org/abs/2009.09139
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031

	1 Introduction
	2 Related Work
	2.1 Pre-Trained Language Models
	2.2 Knowledge Distillation for NLP Applications
	2.3 Self-Distillation
	2.4 Neural Network Ensemble

	3 Methodology of Fine-Tuning BERT
	3.1 Fine-Tuning Vanilla BERT
	3.2 Self-Ensemble
	3.3 Self-Distillation with Experience Replay
	3.3.1 Self-Distillation Averaged (SDA)
	3.3.2 Self-Distillation Voted (SDV)

	4 Experiments
	4.1 Datasets
	4.1.1 GLUE Benchmark
	4.1.2 Classification Benchmark

	4.2 Implementation Details
	4.3 Model Selection
	4.3.1 Size of Experience Pool $ N $
	4.3.2 Size of Teacher Model $ K $
	4.3.3 Self-Distillation Weight $ \lambda $

	4.4 Model Performance
	4.4.1 Effects on Fine-Tuning BERT-Base
	4.4.2 Effects on Fine-Tuning BERT-Large and RoBERTa-Large

	4.5 Model Analysis
	4.5.1 Training Stability
	4.5.2 Convergence Curves
	4.5.3 Ablation Study
	4.5.4 Discussion

	5 Conclusions
	Conflict of Interest
	参考文献

