

Multi-perspective Optimization of Pre-trained Language Model: What Works and What's Next

Yige Xu

PhD Student, SCSE, NTU

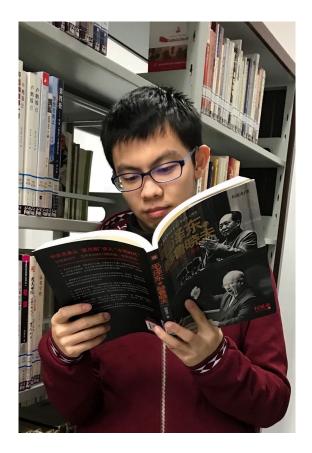
yige002@e.ntu.edu.sg

https://xuyige.github.io

Profile

• Currently, I am a first-year Ph.D. student in LILY, SCSE, NTU. My supervisor is Prof. Chunyan Miao.

- Before NTU, I obtained my Master's degree at Fudan University in 2021, and Bachelor's degree at Shandong University in 2018.
- My research interest mainly focus on knowledge transfer in natural language processing.



Outlines

- Background of Pre-trained Language Models
- Fine-tuning: A Simple but Effective Method of Transferring Knowledge
- Optimization of Training Objective
- Optimization of Module Architecture
- Optimization of Evaluation Metric
- Prompting: A New Paradigm of Transferring Knowledge

Background of Pre-trained Language Models

- Word Representations: Use a dense vector to represent a word
 - Convert the discrete signals to the continuous signals
 - Can represent more features

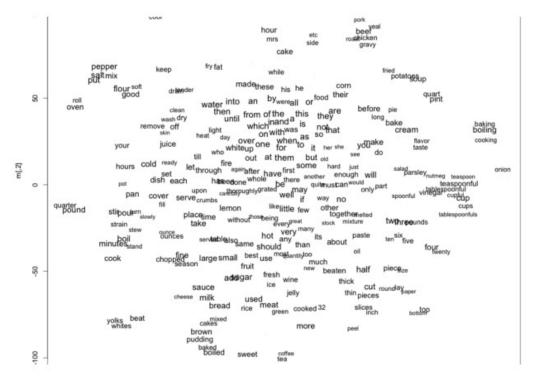


Figure is from <u>here</u>.

Background of Pre-trained Language Models

- Pre-trained Word Representations
 - Provide a good initialization point
 - Contain some semantic information

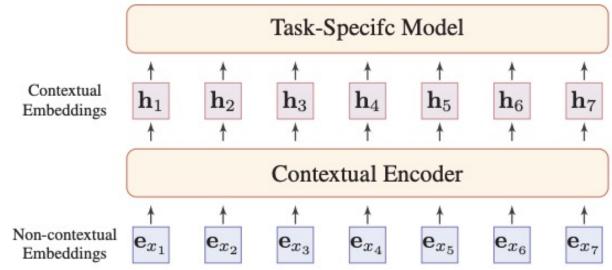
king man woman king-man+woman queen

king - man + woman ~= queen

Figure is from <u>here</u>.

Background of Pre-trained Language Models

- Pre-trained Language Models
 - Learn universal language representations.
 - Obtain a good initialization.
 - As a regularization method.



Pre-trained Models for Natural Language Processing: A Survey

- Source domain: Pre-trained Language Model
- Target task: Downstream Task

How to transfer knowledge from source domain to target task?

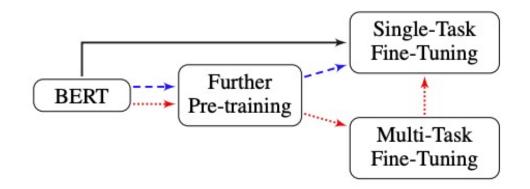


Figure 1: Three general ways for fine-tuning BERT, shown with different colors.

Simply add a classifier layer (Task-specific Model) to the bottom of PLM. Jointly optimize all the parameters from PLM as well as Task-specific Model.

Fine-tuning

• Single-Task Fine-Tuning

Layer	Test error rates(%)
Layer-0	11.07
Layer-1	9.81
Layer-2	9.29
Layer-3	8.66
Layer-4	7.83
Layer-5	6.83
Layer-6	6.83
Layer-7	6.41
Layer-8	6.04
Layer-9	5.70
Layer-10	5.46
Layer-11	5.42

Layer	Test error rates(%)
First 4 Layers + concat	8.69
First 4 Layers + mean	9.09
First 4 Layers + max	8.76
Last 4 Layers + concat	5.43
Last 4 Layers + mean	5.44
Last 4 Layers + max	5.42
All 12 Layers + concat	5.44

- Further Pre-training
 - Apply pre-training task on another unlabeled corpus U. Then fine-tune the new checkpoints on the downstream task same as Single-Task Fine-Tuning.

□Within-task pre-training

U <- corpus from the training set of a target task

In-domain pre-training

U <- corpus from the same domain of a target task

Cross-domain pre-training

U <- corpus from both the same and other different domains to a target task

• Source domain -> Target domain -> Target task

- Further Pre-training
 - Within-Task Pre-training

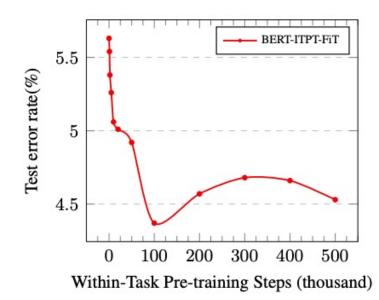


Figure 3: Benefit of different further pre-training steps on IMDb datasets. BERT-ITPT-FiT means "BERT + withIn-Task Pre-Training + Fine-Tuning".

• Further Pre-training

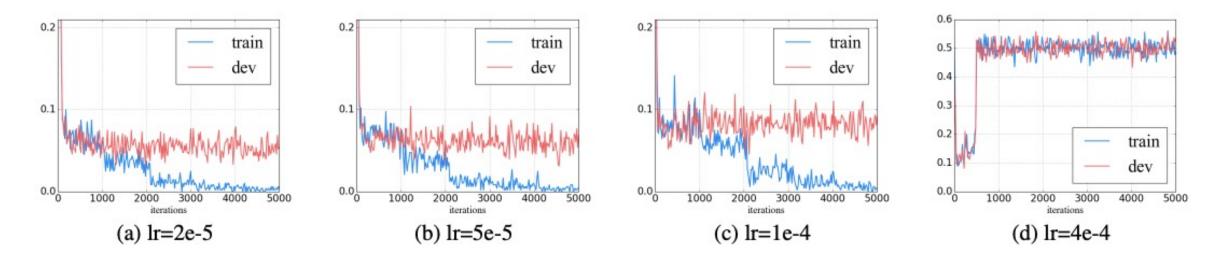
– In-Domain and Cross-Domain Further Pre-training

Domain		sentiment		que	stion	topi	ic
Dataset	IMDb	Yelp P.	Yelp F.	TREC	Yah. A.	AG's News	DBPedia
IMDb	4.37	2.18	29.60	2.60	22.39	5.24	0.68
Yelp P.	5.24	1.92	29.37	2.00	22.38	5.14	0.65
Yelp F.	5.18	1.94	29.42	2.40	22.33	5.43	0.65
all sentiment	4.88	1.87	29.25	3.00	22.35	5.34	0.67
TREC	5.65	2.09	29.35	3.20	22.17	5.12	0.66
Yah. A.	5.52	2.08	29.31	1.80	22.38	5.16	0.67
all question	5.68	2.14	29.52	2.20	21.86	5.21	0.68
AG's News	5.97	2.15	29.38	2.00	22.32	4.80	0.68
DBPedia	5.80	2.13	29.47	2.60	22.30	5.13	0.68
all topic	5.85	2.20	29.68	2.60	22.28	4.88	0.65
all	5.18	1.97	29.20	2.80	21.94	5.08	0.67
w/o pretrain	5.40	2.28	30.06	2.80	22.42	5.25	0.71

• Comparison with Models before PLM

Model	IMDb	Yelp P.	Yelp F.	TREC	Yah. A.	AG	DBP	Sogou	Avg. Δ
Char-level CNN(Zhang et al., 2015)	/	4.88	37.95	/	28.80	9.51	1.55	3.80*	/
VDCNN (Conneau et al., 2016)	/	4.28	35.28	/	26.57	8.67	1.29	3.28	/
DPCNN (Johnson and Zhang, 2017)	/	2.64	30.58	/	23.90	6.87	0.88	3.48*	/
D-LSTM (Yogatama et al., 2017)	/	7.40	40.40	/	26.30	7.90	1.30	5.10	/
Standard LSTM (Seo et al., 2017)	8.90	/	/	/	/	6.50	/	/	/
Skim-LSTM (Seo et al., 2017)	8.80	/	/	/	/	6.40	/	/	/
HAN (Yang et al., 2016)	/	/	/	/	24.20	/	/	/	/
Region Emb. (Qiao et al., 2018)	/	3.60	35.10	/	26.30	7.20	1.10	2.40	/
CoVe (McCann et al., 2017)	8.20	/	/	4.20	/	/	/	/	/
ULMFiT (Howard and Ruder, 2018)	4.60	2.16	29.98	3.60	/	5.01	0.80	/	/
BERT-Feat	6.79	2.39	30.47	4.20	22.72	5.92	0.70	2.50	-
BERT-FiT	5.40	2.28	30.06	2.80	22.42	5.25	0.71	2.43	9.22%
BERT-ITPT-FiT	4.37	1.92	29.42	3.20	22.38	4.80	0.68	1.93	16.07%
BERT-IDPT-FiT	4.88	1.87	29.25	2.20	21.86	4.88	0.65	/	18.57 %
BERT-CDPT-FiT	5.18	1.97	29.20	2.80	21.94	5.08	0.67	/	14.38%

• Learning Rate Tuning



 A lower learning rate such as 2e-5 is necessary to make PLM (BERT) overcome the catastrophic forgetting problem.

- Learning Rate Tuning
 - Utilize a layer-specific learning rate

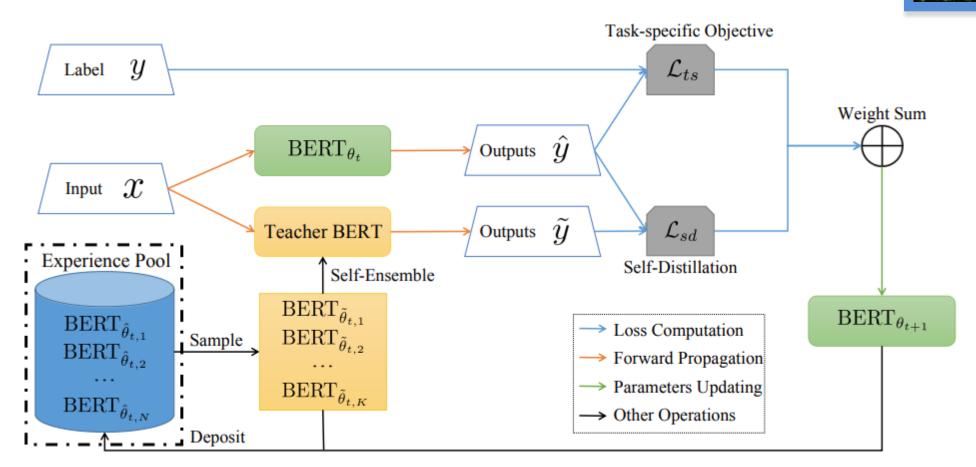
$$\theta_t^l = \theta_{t-1}^l - \eta^l \cdot \nabla_{\theta^l} J(\theta)$$

$$\eta^{k-1} = \xi \cdot \eta^k$$

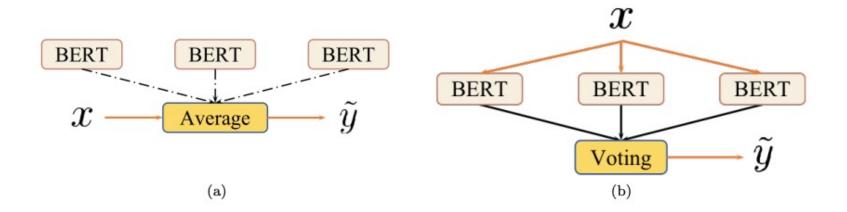
Learning rate	Decay factor ξ	Test error rates(%)
2.5e-5	1.00	5.52
2.5e-5	0.95	5.46
2.5e-5	0.90	5.44
2.5e-5	0.85	5.58
2.0e-5	1.00	5.42
2.0e-5	0.95	5.40
2.0e-5	0.90	5.52
2.0e-5	0.85	5.65

Table 4: Decreasing layer-wise layer rate.

- Fine-tuning usually achieves better results than feature extraction
- Fine-tuning strategy itself is simple and has yet to be fully explored
- How can we maximize the utilization of PLM without introducing external data or knowledge?



- Self-Ensemble
 - Sample checkpoints from the experience pool
 - Use parameter averaging or logits voting to compute the output of teacher models



- Self-Distillation
 - Self-Distillation-Averaged (SDA)

$$\bar{\theta_t} = \frac{1}{K} \sum_{k=1}^{K} \tilde{\theta}_{t,k},$$

 $\mathcal{L}_{sd}(x) = MSE\Big(BERT_{\vartheta_t}(x), BERT_{\bar{\theta}_t}(x)\Big),$

– Self-Distillation-Voted (SDV)

$$\mathcal{L}_{sd}(x) = MSE\Big(BERT_{\theta_t}(x), \frac{1}{K}\sum_{k=1}^{K}BERT_{\tilde{\theta}_{t,k}}(x)\Big).$$

• Main Results

Model		SST-2		STS-B	QQP	MNLI-m/mm Acc	QNLI	RTE	Avg. Score
	Mcc	Acc	Acc/F1	P/S Corr	Acc/F1	Acc	Acc	Acc	
$BERT_{BASE}$ [1]	52.1	93.5	88.9/84.8	87.1/85.8	71.2/89.2	84.6/83.4	90.5	66.4	79.7
$BERT_{BASE}$ -ReImp	52.2	93.4	88.3/84.8	86.7/85.6	71.0/89.2	84.3/83.4	90.5	66.5	79.6
$BERT_{SDA}$ (ours)	53.1	94.4	88.7/84.5	87.0/86.0	72.4/89.6	85.0/84.3	91.3	68.8	80.6
$\mathrm{BERT}_{\mathrm{SDV}}$ (ours)	52.6	94.6	88.4/84.4	86.9/85.7	72.5/89.7	85.3/84.3	91.4	68.9	80.5

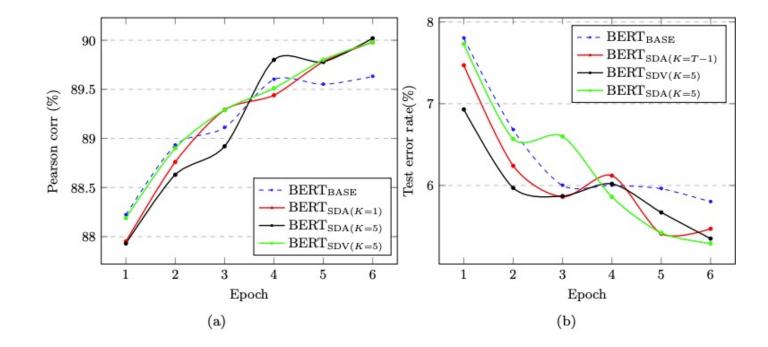
 Table 6. Model Comparison on the Test Set of the GLUE Benchmark

• Main Results

Model	IMDb	AG's News	Avg. Δ	SNLI	Δ
XLNet [2]	3.79	4.49	1	/	/
MT-DNN [11] CA-MTL [42]	/	/	/	$91.6 \\ 92.1$	/
BERT - L (our implementation)	4.98	5.45	-	90.9	-
RoBERTa - L (our implementation)	3.88	5.33	-	91.8	-
$egin{array}{l} { m BERT}-{ m L}_{ m SDV} \\ { m BERT}-{ m L}_{ m SDA} \\ { m RoBERTa}-{ m L}_{ m SDV} \\ { m RoBERTa}-{ m L}_{ m SDA} \end{array}$	4.66 4.58 3.58 3.48	5.21 5.15 5.03 5.02	5.62% 7.02% 5.62% 5.81%	91.5 91.4 92.6 92.5	6.59% 5.49% 9.76% 8.54%

Table 7. Model Comparison of Different 24-Layer Model

• Convergence Curves



• Convergence Curves

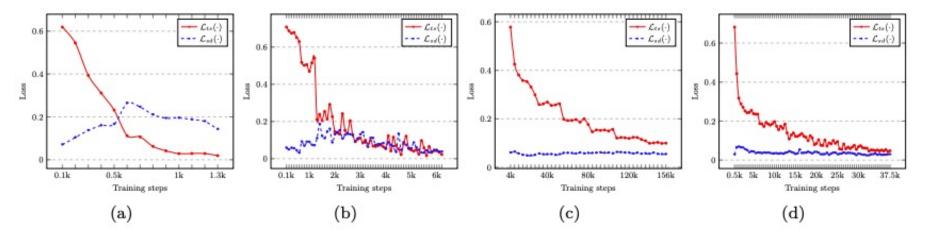


Fig.5. Loss curve of $BERT_{SDA(K=1)}$ on four datasets: (a) MRPC, (b) RTE, (c) QNLI, and (d) IMDb.

• Model Comparison

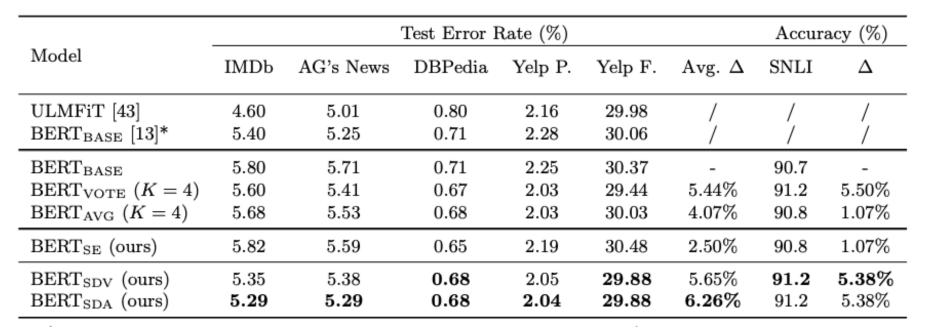


Table 9. Model Comparison of Fine-Tuning the BERT-Base (BERT_{BASE}) Model

• Model Comparison

Model	CoLA (Mcc)	SST-2 (Acc)	QQP $(Acc/F1)$	MNLI-m/mm (Acc)	QNLI (Acc)
BERT _{LARGE} MT-DNN MT-DNN _{KD}	$61.8 \\ 63.5 \\ 64.5$	$93.5 \\ 94.3 \\ 94.3$	91.1/88.0 91.9/89.2 91.9/89.4	86.3/86.2 87.1/86.7 87.3/87.3	92.4 92.9 93.2
$\operatorname{BERT}_{\operatorname{SDA}}$ (ours) $\operatorname{BERT}_{\operatorname{SDV}}$ (ours)	$63.4 \\ 63.1$	$94.4 \\ 94.3$	91.8/88.9 92.0/89.1	87.0/86.6 87.2/86.8	$92.6 \\ 92.8$

 Table 10. Comparison with Distillation-based Methods on the Development Set of the GLUE Benchmark

- Optimization of the Module Architecture
 - PLM not always performs well, in some challenging task such as Keyphrase Generation, Transformer even performs worse than RNNs
 - Keyphrase Generation: Given an input document X, the task aims to predict a sequence of keyphrases that contain the core idea of the input document
 - In KG tasks, uninformative content abounds in documents while salient information is diluted in the global context.

- Optimization of the Module Architecture
 - Chunking: Separate the input document manually
 - Sparse the Matrix of Attention Mask:

$$\bar{\mathbf{M}}_{i,j} = (\alpha \mathbf{M}_{i,j}^{lead}) \circ (\beta \mathbf{M}_{i,j}^{neigh}) \circ (\gamma \mathbf{M}_{i,j}^{topk})$$

– Apply Relative Multi-head Attention:

$$egin{aligned} \mathbf{A}_{i,j}^{abs} &= \mathbf{Q}_i \mathbf{K}_j^T \ &= \mathbf{H}_i \mathbf{W}_q (\mathbf{H}_j \mathbf{W}_k)^T + \mathbf{H}_i \mathbf{W}_q (\mathbf{R}_{i-j} \mathbf{W}_k)^T \ &+ \mathbf{u} (\mathbf{H}_j \mathbf{W}_k)^T + \mathbf{v} (\mathbf{R}_{i-j} \mathbf{W}_k)^T. \end{aligned}$$

• Optimization of the Module Architecture

Model	Insp		Krap		Seml		KP2	
	$\mid F_1@M$	$F_1@5$	$F_1@M$	$F_1@5 \mid$	$F_1@M$	$F_1@5$	$F_1@M$	$F_1@5$
ExHiRD (Chen et al., 2020)	0.291	0.253	0.347	0.286	0.335	0.284	0.374	0.311
ExHiRD with RNN (Our Implementation)	0.288	0.248	0.344	0.281	0.326	0.274	0.374	0.311
(Ours) ExHiRD with TF	0.278	0.232	0.329	0.272	0.310	0.258	0.364	0.300
+ SM only	0.280	0.235	0.334	0.275	0.319	0.266	0.372	0.304
+ RMHA only	0.289	0.244	0.336	0.277	0.325	0.278	0.372	0.313
+ SM + RMHA	0.293	0.254	0.351	0.286	0.337	0.289	0.375	0.316

• Optimization of the Module Architecture

N	$ \alpha$	eta	$\gamma \mid$	$F_1@M$	F_1 @5	C@M	C@5	#Avg. Len
4	ba	seli	ine	0.364	0.300	24,154	23,827	3.96
4	1	1	1	0.372	0.304	24,812	24,042	3.85
			0	0.367	0.302	24,905	23,929	3.95
		0		0.363	0.298	25,051	23,662	4.05
	0			0.370	0.298	24,315	23,632	3.73
6	1	1	1	0.372	0.304	24,562	23,979	3.82
			0	0.364	0.306	25,112	24,208	4.13
		0		0.366	0.296	24,177	23,347	3.90
	0			0.368	0.302	24,468	23,770	3.87

- Optimization of the Evaluation Metric
 - Traditional F1 score only considers the exact match predictions

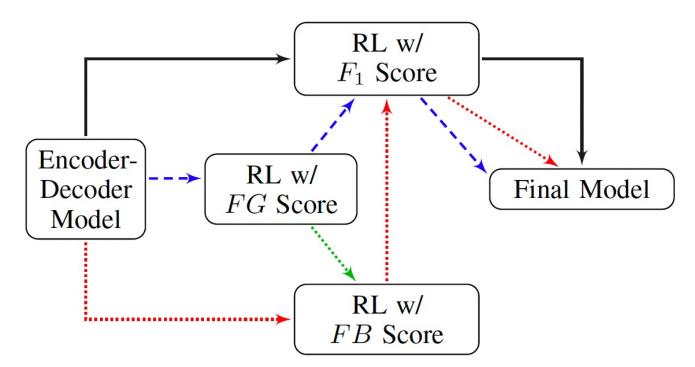
Score("natural language processing", "language understanding") = Score("natural language processing", "apple tree") = 0

- Keyphrases are short, therefore it is not suitable for n-gram-based metric

Is there any fine-grained metric for a smooth evaluation?

- Fine-Grained Score (FG-Score)
 - Token-level F1 Score
 - For the predicted keyphrase and the ground truth, compute the F1 score in token level
 - Token-level Edit Distance
 - Use dynamic programming to compute the edit distance in token level and then re-normed by the target length
 - Repetition Rate Penalty
 - Prevent from generating similar keyphrases
 - Penalize when the predicted words appear more times than that in the ground truth
 - Generation Quantity Penalty
 - Prevent from generating keyphrases only with high confidence
 - Penalize when the number of the predicted keyphrases is not equal to the number of the ground truth

- Optimization of the Evaluation Metric
 - Two-stage Reinforcement Learning Framework



• Optimization of the Evaluation Metric

Madal		Inspec]	Krapivin			KP20k	
Model	$F_1@M$	$F_{1}@5$	FG	$F_1@M$	$\hat{F_1}@5$	FG	$F_1@M$	$F_1@5$	FG
catSeq(Yuan et al., 2020)	0.262	0.225	0.381	0.354	0.269	0.352	0.367	0.291	0.371
catSeqD(Yuan et al., 2020)	0.263	0.219	0.385	0.349	0.264	0.350	0.363	0.285	0.369
catSeqCorr(Chen et al., 2018)	0.269	0.227	0.391	0.349	0.265	0.360	0.365	0.289	0.374
catSeqTG(Chen et al., 2019)	0.270	0.229	0.391	0.366	0.282	0.344	0.366	0.292	0.369
SenSeNet(Luo et al., 2020)	0.284	0.242	0.393	0.354	0.279	0.355	0.370	0.296	0.373
ExHiRD-h(Chen et al., 2020)	0.291	<u>0.253</u>	<u>0.395</u>	0.347	0.286	0.354	0.374	0.311	0.375
Utilizing RL (Chan et al., 2019))								
$catSeq+RL(F_1)$	0.300	0.250	0.382	0.362	0.287	0.360	0.383	0.310	0.369
$catSeqD+RL(F_1)$	0.292	0.242	0.380	0.360	0.282	0.357	0.379	0.305	<u>0.377</u>
$catSeqCorr+RL(F_1)$	0.291	0.240	0.392	<u>0.369</u>	0.286	<u>0.376</u>	0.382	0.308	<u>0.377</u>
$catSeqTG+RL(F_1)$	<u>0.301</u>	<u>0.253</u>	0.389	<u>0.369</u>	<u>0.300</u>	0.344	<u>0.386</u>	0.321	0.370
Ours									
catSeq*+RL(FG)	0.252	0.201	0.460	0.359	0.228	0.413	0.365	0.290	0.440
$catSeq^* + RL(FB)$	0.254	0.200	0.463	0.354	0.230	0.416	0.366	0.291	0.444
$catSeq^*+2RL(FG)$	0.308	0.266	0.425	0.375	0.304	0.389	0.391	0.327	0.381
$catSeq^*+2RL(FB)$	0.310	0.267	0.430	0.374	0.305	0.390	0.392	0.330	0.383

Prompt

- Definition
 - Prompt engineering is the process to create a prompting function $f_{\text{prompt}}(x)$ that helps the PLM predicts the answer.

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
Text Selecturion	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

Prompt

- Advantages
 - Better explore the potential of PLM
 - Avoid the gap between pre-training and fine-tuning
 - Effective in many source-limited scenarios such as few-shot settings
 - Make all the tasks consistent in the same approaches

Prompt

- Challenges
 - Prompts require carefully tuning in specific domain
 - The interpretability of prompt is limited
 - Fine-tuning usually has better performance in large-scaled supervised scenarios
 - Transferability prompts have yet to be fully explored

