ACL 2025

VIENNECL

w <= | TECHNOLOGICAL
=) UNIVERSITY

SINGAPORE

EETE NANYANG

SoftCoT: Soft Chain-of-Thought for Efficient Reasoning

with LLMs

Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao

Nanyang Technological University, Singapore



Research Background

* Chain-of-Thought reasoning has become one of the basic ability of LLMs.

e Three primary concerns:
— Consistency and Stability: CoT can vary significantly with minor changes in prompts. [1,2]
— Robustness: CoT’s effectiveness depends on the quality of intermediate thoughts. [3]

— Efficiency: CoT often requires substantial computational resources. [4] SoftCoT



Continuous Space Reasoning

* Generate soft thought tokens according to the hidden of last-token last-layer
* Facilitates the reasoning chain generation

* Optimal latent-space exploration
— Coconut [3], CCoT [5]
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Motivation

Current latent-space reasoning approaches consider latent-space reasoning as a new task and
fine-tunes the whole LLM [3,5], which results in ...

 Catastrophic forgetting problem on SOTA LLMs
 Auto-regressively generate the soft thought tokens

o O O O3,
Can we freeze the LLM for mitigating (b) Coconut }\ }\ Tyt T
the catastrophic forgetting problem? Large Language Model # J
: f ERERERN
OOoOOoOoOoOoooo
Challenge: the fixed LLM struggle to L - - J

generate learnable soft thought tokens.
How to generate the learnable soft thought tokens?




SoftCoT: Overall Architecture
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SoftCoT: Soft Thought Tokens Generataion

e Soft Thought Tokens Generation

— Use auxiliary assistant model to produce the
soft thoughts

Xassist = concat [Iassista Q, [UNK ] 1:N ]
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SoftCoT: Soft Thought Tokens Projection

* Soft Thought Tokens Projection

— Maps the assistant-generated soft thoughts
from the assistant model’s embedding space to
the LLM’s embedding space.
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— Only the parameters in the projection module
are trainable.

Methodology



SoftCoT: LLM Reasoning
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Comparison with baselines

GSM8K ASDiv-Aug AQuA StrategyQA DU
Model Mathematical Commonsense | Symbolic Avg.
GPT-2
Coconut (Hao et al., 2024) | 34.10%, 5, 38.92%,40 22.83%,4, - - -
LLaMA-3.1-8B-Instruct
Zero-Shot CoT 79.614081 86.784+063 54.6542.43 65.634331 54.4045 40 | 68.21
Zero-Shot CoT-Unk 799541050 86.904041 55.284188 66.1642.70 54.164146 | 68.49
Zero-Shot Assist-CoT 80.764153 86.961046 355.834703 66.5543 99 58.24 13 5¢ | 69.67
LoRA Fine—Tuning 75.66i0_00 86.67:&0_00 52.3610.00 = = =
Coconut (Hao et al., 2024—)T 76.121000 86.801000 53.154000 - - -
SoftCoT (Olll‘S) 81.03i0_42 87.19:&0_40 56.3011_67 69.04:&1_23 59.0411_93 70.52

e Supervised LoRA Fine-Tuning performs worse than zero-shot CoT, which make Coconut not

applicable to SOTA LLMs

* Assistant model is effective to facilitate CoT reasoning

* SoftCoT consistently benefits from the supervised training




Generalization to Other LLM Backbones

Model GSM8K ASDiv-Aug AQuA StrategyQA DU Avg.
Mathematical Commonsense | Symbolic
Zero-Shot CoT 83.70:|:0_73 87. 19:I:0.28 64.53:]:3_27 49.65:133_18 66.40:132_26 70.29
Zero-Shot CoT-Unk 84. 12:|:0_71 86.94:|:0_89 64.72:_|_2_06 50.74:131_90 66.483131_43 70.60
Zero-Shot Assist-CoT 84.8541035 88.631105 64.964743 52714265 67.041534 | 71.64
LoRA Fine-Tuning 81 .80:|:()_00 86.80i0_00 62.60:1:0_0() - - -
Coconut (Hao et al., 2024) | 82.491000 86.904+000 63.3940.00 - - -
SoftCoT (OllI‘S) 85.81:|:1_32 88.90i1_01 72.441_2_19 60.61i1_55 67.52i2_92 75.06

Results on Qwen2.5-7B-Instruct

e SoftCoT is effective across different LLM architectures



Model Analysis — Number of Thought Tokens
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Model Analysis — Size of Assistant Model

Method 0.5B 1.5B 7B

Zero-Shot CoT 83.70 83.70 83.70
Zero-Shot Assist-CoT | 84.78 84.85 84.90
SoftCoT 85.76 85.81 85.84

Table 5: Performance on GSM8K with different sizes
of assistant model on Qwen?2.5 series.

* The scale of the assistant model has limited impact on the accuracy of the final
answer



Model Analysis — Self-Consistency

Model GSMSK ASDiv-Aug AQuA StrategyQA DU

ode N=1 N=10| N=1 N=10| N=1 N=10| N=1 N=10| N=1 N=10
Zero-Shot CoT 79.61108190.3610.40[86.78 106389.23 10.1754.65 12 4363.23 1 086/65.63 +33170.13 1 0.4754.40 1 2.4065.76 1+ 1 54
Zero-Shot Assist-CoT|80.76+1.5390.43 +0.69/86.96404689.48 +-0.36155.83 +2.9863.62 +0.99/66.55 +3.9970.48 +0.63158.24 +3 5665.84 11 03

SoftCoT (Ours)

81.03£0.4290.63 +9.39

87.19+0.4089.75+0.20/56.30+ 1.6765.51 +0.72/69.04 +1.2371.14+0.1059.04 +1.9367.36 - 1.12

Table 4: Self Consistency for SoftCoT on LLaMA-3.1-8B-Instruct. “N” indicates the number of reasoning chains.

e SoftCoT introduces an independent improvement mechanism, which can be
effectively combined with self-consistency for enhanced reasoning performance



Takeaway messages

* We address the need for efficient CoT reasoning on continuous space within SOTA LLMs

— Freezing the backbone LLM to mitigates the catastrophic forgetting problem.

— Creating a learnable projection module to map the assistant-generated soft thoughts from the

assistant model’s embedding space to the LLM’s embedding space.

* SoftCoT has demonstrated that
— it enables reasoning on continuous space and has a better downstream performance than baselines.
— it can be scaled to multiple LLM architectures

— it can be scaled to existing test-time scaling methods such as self-consistency.
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