

SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs

Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao

Nanyang Technological University, Singapore

Research Background

- Chain-of-Thought reasoning has become one of the basic ability of LLMs.
- Three primary concerns:
 - Consistency and Stability: CoT can vary significantly with minor changes in prompts. [1,2]
 - Robustness: CoT's effectiveness depends on the quality of intermediate thoughts. [3]
 - Efficiency: CoT often requires substantial computational resources. [4]

Continuous Space Reasoning

- Generate soft thought tokens according to the hidden of last-token last-layer
- Facilitates the reasoning chain generation
- Optimal latent-space exploration
 - Coconut [3], CCoT [5]

Motivation

Current latent-space reasoning approaches consider latent-space reasoning as a new task and fine-tunes the whole LLM [3,5], which results in ...

- Catastrophic forgetting problem on SOTA LLMs
- Auto-regressively generate the soft thought tokens

Can we *freeze the LLM* for mitigating the catastrophic forgetting problem?

Challenge: the fixed LLM struggle to generate learnable soft thought tokens.

How to generate the learnable soft thought tokens?

SoftCoT: Overall Architecture

SoftCoT: Soft Thought Tokens Generataion

Use auxiliary assistant model to produce the soft thoughts

$$\mathbf{x}_{\mathrm{assist}} = \mathrm{concat} ig[\mathcal{I}_{\mathrm{assist}}, \mathcal{Q}, extstyle{[UNK]}_{1:N} ig]$$

$$\mathbf{h}^{\mathrm{assist}} = \mathrm{Assistant}(\mathbf{x}_{\mathrm{assist}}),$$

$$\mathbf{t}_{ ext{assist}} = \mathbf{h}^{ ext{assist}}_{|\mathcal{I}|+|\mathcal{Q}|+1:|\mathcal{I}|+|\mathcal{Q}|+N}.$$

SoftCoT: Soft Thought Tokens Projection

- Soft Thought Tokens Projection
 - Maps the assistant-generated soft thoughts from the assistant model's embedding space to the LLM's embedding space.
 - Only the parameters in the projection module are trainable.

$$\mathcal{T}_{\text{soft}} = \text{Linear}_{\theta}(\mathbf{t}_{\text{assist}}),$$

Methodology Results Analysi

SoftCoT: LLM Reasoning

- LLM Reasoning with SoftCoT
 - Apply the soft thoughts to aid LLMs in CoT reasonings.

$$\mathbf{x}_{\mathrm{LLM}} = \mathrm{concat}\big[\mathcal{I}_{\mathrm{LLM}}, \mathcal{Q}, \mathcal{T}_{\mathrm{soft}}\big],$$

$$egin{aligned} ar{\mathcal{R}} &= \mathrm{LLM}(\mathbf{x}_{\mathrm{LLM}}), \ ar{\mathcal{A}} &= \mathrm{LLM}(\mathbf{x}_{\mathrm{LLM}}, ar{\mathcal{R}}), \ \hat{\mathcal{A}} &= \mathcal{E}(ar{\mathcal{A}}), \end{aligned}$$

Comparison with baselines

Model	GSM8K	ASDiv-Aug Mathematical	AQuA	StrategyQA Commonsense	DU Symbolic	Avg.
GPT-2						
Coconut (Hao et al., 2024)	$34.10^*_{\pm 1.50}$	$38.92^{\dagger}_{\pm 0.00}$	$22.83^{\dagger}_{\pm 0.00}$	-	-	_
LLaMA-3.1-8B-Instruct						
Zero-Shot CoT	$79.61_{\pm 0.81}$	$86.78_{\pm0.63}$	$54.65_{\pm 2.43}$	$65.63_{\pm 3.31}$	$54.40_{\pm 2.40}$	68.21
Zero-Shot CoT-Unk	$79.95_{\pm 0.59}$	$86.90_{\pm0.41}$	$55.28_{\pm 1.88}$	$66.16_{\pm 2.70}$	$54.16_{\pm 1.46}$	68.49
Zero-Shot Assist-CoT	$80.76_{\pm 1.53}$	$86.96_{\pm0.46}$	$55.83_{\pm 2.98}$	$66.55_{\pm 3.99}$	$58.24_{\pm 3.56}$	69.67
LoRA Fine-Tuning	$75.66_{\pm0.00}$	$86.67_{\pm0.00}$	$52.36_{\pm0.00}$	-	-	-
Coconut (Hao et al., 2024) [†]	$76.12_{\pm0.00}$	$86.80_{\pm0.00}$	$53.15_{\pm0.00}$	-	-	-
SoftCoT (Ours)	$81.03_{\pm 0.42}$	$87.19_{\pm0.40}$	$56.30_{\pm 1.67}$	$69.04_{\pm 1.23}$	59.04 _{±1.93}	70.52

- Supervised LoRA Fine-Tuning performs worse than zero-shot CoT, which make Coconut not applicable to SOTA LLMs
- Assistant model is effective to facilitate CoT reasoning
- SoftCoT consistently benefits from the supervised training

Generalization to Other LLM Backbones

Model	GSM8K	ASDiv-Aug	AQuA	StrategyQA	DU	Avg.
	Mathematical			Commonsense	Symbolic	
Zero-Shot CoT	$83.70_{\pm 0.78}$	$87.19_{\pm0.28}$	$64.53_{\pm 3.27}$	$49.65_{\pm 3.18}$	$66.40_{\pm 2.26}$	70.29
Zero-Shot CoT-Unk	$84.12_{\pm 0.71}$	$86.94_{\pm0.89}$	$64.72_{\pm 2.06}$	$50.74_{\pm 1.90}$	$66.48_{\pm 1.43}$	70.60
Zero-Shot Assist-CoT	$84.85_{\pm 0.35}$	$88.63_{\pm 1.05}$	$64.96_{\pm 2.83}$	$52.71_{\pm 2.65}$	$67.04_{\pm 2.84}$	71.64
LoRA Fine-Tuning	81.80 _{±0.00}	$86.80_{\pm0.00}$	$62.60_{\pm0.00}$	-	-	_
Coconut (Hao et al., 2024)	$82.49_{\pm 0.00}$	$86.90_{\pm0.00}$	$63.39_{\pm0.00}$	-	_	-
SoftCoT (Ours)	$85.81_{\pm 1.82}$	$\pmb{88.90}_{\pm \pmb{1.01}}$	$72.44_{\pm 2.19}$	$60.61_{\pm 1.55}$	$67.52_{\pm 2.92}$	75.06

Results on Qwen2.5-7B-Instruct

SoftCoT is effective across different LLM architectures

Model Analysis – Number of Thought Tokens

• Soft thoughts reduce the required number of thought tokens

Model Analysis – Size of Assistant Model

Method	0.5B	1.5B	7B
Zero-Shot CoT Zero-Shot Assist-CoT	83.70 84.78	83.70 84.85	83.70 84.90
SoftCoT	85.76	85.81	85.84

Table 5: Performance on GSM8K with different sizes of assistant model on Qwen2.5 series.

 The scale of the assistant model has limited impact on the accuracy of the final answer

Model Analysis – Self-Consistency

Model	GSM8K	ASDiv-Aug	AQuA	StrategyQA	DU
	N=1 $N=10$	N = 1 N = 10	N = 1 $N = 10$	N=1 $N=10$	N=1 $N=10$
Zero-Shot CoT	$79.61_{\pm 0.81} 90.36_{\pm 0.40}$	$86.78_{\pm 0.63}89.23_{\pm 0.17}$	$54.65_{\pm 2.43}63.23_{\pm 0.86}$	$65.63_{\pm 3.31} 70.13_{\pm 0.47}$	$54.40_{\pm 2.40}65.76_{\pm 1.54}$
Zero-Shot Assist-CoT	$80.76_{\pm 1.53} 90.43_{\pm 0.69}$	$86.96_{\pm 0.46} 89.48_{\pm 0.36}$	$55.83_{\pm 2.98}63.62_{\pm 0.99}$	$66.55_{\pm 3.99} 70.48_{\pm 0.68}$	$58.24_{\pm 3.56}65.84_{\pm 1.93}$
SoftCoT (Ours)	$81.03_{\pm 0.42} 90.63_{\pm 0.39}$	$87.19_{\pm 0.40}89.75_{\pm 0.29}$	$56.30_{\pm 1.67}65.51_{\pm 0.72}$	$69.04_{\pm 1.23}71.14_{\pm 0.10}$	$59.04_{\pm 1.93}67.36_{\pm 1.12}$

Table 4: Self Consistency for SoftCoT on LLaMA-3.1-8B-Instruct. "N" indicates the number of reasoning chains.

 SoftCoT introduces an independent improvement mechanism, which can be effectively combined with self-consistency for enhanced reasoning performance

Takeaway messages

- We address the need for efficient CoT reasoning on continuous space within SOTA LLMs
 - Freezing the backbone LLM to mitigates the catastrophic forgetting problem.
 - Creating a learnable projection module to map the assistant-generated soft thoughts from the assistant model's embedding space to the LLM's embedding space.
- SoftCoT has demonstrated that
 - it enables reasoning on continuous space and has a better downstream performance than baselines.
 - it can be scaled to multiple LLM architectures
 - it can be scaled to existing test-time scaling methods such as self-consistency.

References

- [1] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schütze, Yoav Goldberg. *Measuring and Improving Consistency in Pretrained Language Models*. TACL 2021.
- [2] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou. *Self-Consistency Improves Chain of Thought Reasoning in Language Models*. ICLR 2023.
- [3] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, Yuandong Tian. *Training Large Language Models to Reason in a Continuous Latent Space*. *arXiv preprint: 2412.06769*.
- [4] Zhenglin Wang, Jialong Wu, Yilong Lai, Congzhi Zhang, Deyu Zhou. *SEED: Accelerating Reasoning Tree Construction via Scheduled Speculative Decoding*. COLING 2025.
- [5] Jeffrey Cheng, Benjamin Van Durme. *Compressed Chain of Thought: Efficient Reasoning Through Dense Representations*. *arXiv preprint: 2412.13171*.