

RevMUX: Data Multiplexing with Reversible Adapters for Efficient LLM Batch Inference

Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao

Research Background

- LLM-as-a-Service requires efficient inference.
- Three primary concerns:

Background

- Latency (the response time): Quantization[1], Model distillation[2].
- Memory usage (during long-sequence processing): Speculative decoding[3], KV Cache[4].
- Throughput (number of concurrent queries): DataMUX[5], MUX-PLM[6].

Batch Inference

Data Multiplexing for Batch Inference

- The Multi-Input Multi-Output (MIMO) Architecture
 - Multiplexer: mix a batch of N data samples into one
 - Demultiplexer: de-mix the models' output into a batch

Motivation

Current MIMO-style models consider MIMO as a new task and train LLM together with the multiplexer and demultiplexer [5,6], which results in ...

- Failing to handle the original Single-Input Single-Output scenario
- Not applicable to increasingly larger models

Can we **Freeze LLM** while still achieve data multiplexing?

Challenge: the fixed LLM can struggle to differentiate individuals within the consolidated inputs.

How to trace and preserve the inputs?

RevMUX: Overall Architecture

RevMUX: Prefilling

- Prefilling
 - Use first l layers to convert the input instances to dense representations: $N \times \mathbb{R}^d \to N \times \mathbb{R}^d$
 - Ensure the feature space becoming more similar to the feature space seen during the backbone pre-training

RevMUX: Reversible Multiplexer

Mix N = 2 inputs into one

Methodology

$$\begin{aligned} \mathbf{o}_{1}^{l} &= \mathbf{i}_{1}^{l} + \mathcal{F}(\mathbf{i}_{2}^{l}), \\ \mathbf{o}_{2}^{l} &= \mathbf{i}_{2}^{l} + \mathcal{G}(\mathbf{o}_{1}^{l}), \\ \mathbf{o}^{l} &= \operatorname{concat}[\mathbf{o}_{1}^{l}, \mathbf{o}_{2}^{l}], \qquad \text{multiplexer: } N \times \mathbf{i} \to 1 \times \mathbf{o} \end{aligned}$$

RevMUX: Reverse Demultiplexer

RevMUX: Reverse Demultiplexer

• The reverse demultiplexer decouples the mixed inputs using the same F and G

RevMUX: Training Loss

- Loss function
 - Cross-entropy: classification

$$\mathcal{L}_{ce} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c})$$

- InfoNCE loss: match the demultiplexed outputs to those from the standard SISO forward pass

$$\mathcal{L}_{\text{info}} = -\frac{1}{N} \sum_{k=1}^{N} \mathbb{E} \left[\log \frac{\exp(\hat{\mathbf{h}}_{k} \cdot \mathbf{h}_{k})}{\sum_{j=1}^{N} \exp(\hat{\mathbf{h}}_{k} \cdot \mathbf{h}_{j})} \right]$$

Methodology

- Joint loss:
$$\mathcal{L} = \mathcal{L}_{ce} + \lambda \mathcal{L}_{info}$$

Comparison with baselines

	Model	N	\nearrow	Tuned	Params	SST-2	MRPC	RTE	QNLI	Avg. Score
Backbones	BERT _{BASE} (Devlin et al., 2019) MUX-BERT _{BASE} (Murahari et al., 2023)	$\begin{vmatrix} 1\\ 1 \end{vmatrix}$	- 100%	() ()	110M 112M	92.20 91.74	87.01 87.75	62.96 63.18	90.55 90.54	83.18 83.30
Baselines	DataMUX (Murahari et al., 2022) MUX-BERT _{BASE} (Murahari et al., 2023)	22	180% 201%	🤚	166M 112M	90.50 90.62	85.05 83.77	<u>60.87</u> 58.19	<u>88.39</u> 88.17	81.20 80.19
Ours	Vanilla Adapters Only Multiplexer Reversible RevMUX (*) RevMUX (*)	2 2 2 2	156% 161% 154% 154%	* * *	16.53M 20.07M 9.45M 120M	90.42 90.65 <u>90.85</u> 91.21	84.78 84.60 <u>85.06</u> 85.78	60.06 60.41 60.72 61.41	88.19 88.14 88.25 88.72	80.86 80.95 <u>81.22</u> 81.78

- The reversible multiplexer and the reverse demultiplexer together enhance the performance
- RevMUX (🏶) is comparable to DataMUX (🔶)

Inference Efficiency Comparison

	Model	N	\nearrow	Tuned	SST-2	MRPC	RTE	QNLI	Avg. FLOPs
Backbones	MUX-BERT _{BASE} (Murahari et al., 2023)	1	100%	٨	25.824	11.477	7.651	162.593	51.886
Baselines	DataMUX (Murahari et al., 2022) MUX-BERT _{BASE} (Murahari et al., 2023)	22	180% 201%	() ()	13.866 12.439	6.400 5.741	4.267 3.827	90.664 81.330	28.799 25.834
Ours	Vanilla Adapters Only Multiplexer Reversible RevMUX	2 2 2	156% 161% 154%	**	16.545 16.019 16.749	7.741 7.495 7.837	5.263 5.096 5.328	103.663 100.363 104.938	33.303 32.243 33.713

Table 11: Inference efficiency comparison using BERT_{BASE} as backbone model. (Unit: T FLOPs)

Although RevMUX (
) has slightly higher average FLOPs than DataMUX (
), it achieves about 55% to 60% speedups on average, without fine-tuning the backbone language models.

Scalability to Larger Model

- RevMUX is scalable to different model types.
- RevMUX is scalable to billionscale decoder-only LLMs
- Both the reversible multiplexer and reverse demultiplexer remains effective on larger-scale LLMs

Backbones	Params.	Model	SST-2	MRPC	RTE	QNLI	Avg. Score
		Vanilla Adapters	90.42	84.78	60.06	88.19	80.86
$BERT_{BASE}$	110M	Only Multiplexer Reversible	90.65	84.60	60.41	88.14	80.95
		RevMUX	90.85	85.06	60.72	88.25	81.22
		Vanilla Adapters	89.00	81.72	57.22	85.36	78.33
$\mathrm{T5}_{\mathrm{Small}}$	60M	Only Multiplexer Reversible	89.04	82.30	57.51	85.44	78.57
		RevMUX	89.14	82.45	60.22	85.63	79.36
	220M	Vanilla Adapters	92.36	82.94	63.28	87.58	81.54
${ m T5}_{ m Base}$		Only Multiplexer Reversible	92.54	83.19	64.01	88.14	81.98
		RevMUX	92.70	83.80	64.73	88.65	82.47
		Vanilla Adapters	92.58	83.16	64.22	88.42	82.10
${ m T5}_{ m Large}$	770M	Only Multiplexer Reversible	92.67	83.46	64.43	88.56	82.28
		RevMUX	92.81	83.86	65.01	88.89	82.64
	88	Vanilla Adapters	94.01	80.96	82.72	85.99	85.92
LLaMA3-8B		Only Multiplexer Reversible	94.09	81.08	82.82	86.24	86.06
		RevMUX	94.38	81.30	83.18	86.53	86.35

Scalability to Larger N

Model	N	Tuned	SST-2	MRPC	RTE	QNLI	Avg. Score
MUX -BERT $_{BASE}$	1	٨	91.74	87.75	63.18	90.54	83.30
RevMUX	2	*	90.85	85.06	60.72	88.25	81.22
$\mathrm{MUX}\text{-}\mathrm{BERT}_{\mathrm{BASE}}$	2	٨	90.62	83.77	58.19	88.17	80.19
RevMUX	4	*	90.28	82.57	59.46	86.48	79.70
$\mathrm{MUX}\text{-}\mathrm{BERT}_{\mathrm{BASE}}$	5	٨	86.88	80.10	59.13	85.58	77.92
RevMUX	8	*	88.30	78.97	58.66	85.17	77.78
MUX - $BERT_{BASE}$	10	٨	83.44	78.63	58.27	82.08	75.61
RevMUX	16	*	85.50	75.17	58.13	84.08	75.72

- RevMUX outperforms MUX-PLM when N=2
- RevMUX maintains comparable or superior performance with larger N

Model Analysis – Number of Prefilling Layer

- Increase the number of prefilling layers retains a better performance
- With a sufficient number of prefilling layers (e.g., l = 6), the model can maintain relatively high accuracy even when N = 16.

Analysis

Takeaway messages

- We addresses the need for high throughput through data multiplexing, handling batches of concurrent queries while maintaining satisfactory downstream performance
 - Freezing the backbone LLM and allow it to be reused in all tasks.
 - Creating a reversible adapter to enhance the decoupling of mixed inputs.
- RevMUX has demonstrated that
 - it has a better downstream performance than baselines that require finetuning the LLM.
 - it can be scaled to larger billion-scale LLMs
 - it can be scaled to 16-inputs.

References

- [1] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, Ping Luo. *Omnidirectionally calibrated quantization for large language models*. ICLR 2024.
- [2] Chengyuan Liu, Yangyang Kang, Fubang Zhao, Kun Kuang, Zhuoren Jiang, Changlong Sun, Fei Wu. *Evolving knowledge distillation with large language models and active learning*. LREC-COLING 2024.
- [3] Yaniv Leviathan, Matan Kalman, Yossi Matias. *Fast inference from transformers via speculative decoding*. ICML 2023.
- [4] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Re, ClarkW. Barrett, Zhangyang Wang, Beidi Chen. *H2O: heavy-hitter oracle for efficient generative inference of large language models*. NeurIPS 2023.
- [5] Vishvak Murahari, Carlos E. Jimenez, Runzhe Yang, Karthik Narasimhan. *DataMUX: Data Multiplexing for Neural Networks*. NeurIPS 2022.
- [6] Vishvak Murahari, Ameet Deshpande, Carlos E. Jimenez, Izhak Shafran, Mingqiu Wang, Yuan Cao, Karthik Narasimhan. *Data multiplexing for high-throughput language models*. Findings of EMNLP 2023.