
RevMUX: Data Multiplexing with Reversible Adapters
for Efficient LLM Batch Inference

Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao

1

Background Methodology Results AnalysisMotivation

Research Background

• LLM-as-a-Service requires efficient inference.

• Three primary concerns:

– Latency (the response time): Quantization[1], Model distillation[2].

– Memory usage (during long-sequence processing): Speculative decoding[3], KV Cache[4].

– Throughput (number of concurrent queries): DataMUX[5], MUX-PLM[6]. Batch Inference

Background Methodology AnalysisMotivation Results

Data Multiplexing for Batch Inference

• The Multi-Input Multi-Output (MIMO) Architecture

– Multiplexer: mix a batch of N data samples into one

– Demultiplexer: de-mix the models’ output into a batch

Large Language Model

Multiplexer Demultiplexer

Large Language Model

Mini-batch processing

Mix𝑵 = 𝟐

DataMUX

Background Methodology AnalysisMotivation Results

Motivation

Current MIMO-style models consider MIMO as a new task and train LLM together with the
multiplexer and demultiplexer [5,6], which results in …

• Failing to handle the original Single-Input Single-Output scenario

• Not applicable to increasingly larger models

Can we Freeze LLM while still

achieve data multiplexing?
Multiplexer Demultiplexer

Large Language Model

Challenge: the fixed LLM can struggle

to differentiate individuals within the

consolidated inputs.
How to trace and preserve the inputs?

Background Methodology AnalysisMotivation Results

RevMUX: Overall Architecture

Prefilling
Down

Projection

Reversible

Multiplexer

Reverse

Demultiplexer

Up

Projection
Prediction

Multiplexing Layer Demultiplexing Layer

Large Language Model

Reused by

Freeze

Background Methodology AnalysisMotivation Results

RevMUX: Prefilling

Prefilling
Down

Projection

Reversible

Multiplexer

Reverse

Demultiplexer

Up

Projection
Prediction

Multiplexing Layer Demultiplexing Layer

Large Language Model

• Prefilling

– Use first 𝑙 layers to convert the input instances to dense representations:

𝑁 × ℝ𝑑 → 𝑁 ×ℝ𝑑

– Ensure the feature space becoming more similar to the feature space seen
during the backbone pre-training

Background Methodology AnalysisMotivation Results

RevMUX: Reversible Multiplexer

Prefilling
Down

Projection

Reversible

Multiplexer

Reverse

Demultiplexer

Up

Projection
Prediction

Multiplexing Layer Demultiplexing Layer

Large Language Model
Reversible Multiplexer Reverse Demultiplexer

Large Language Model

Mix 𝑵 = 𝟐 inputs into one

Down Projection: 𝑁 × 𝒉 → 𝑁 × 𝒊

multiplexer: 𝑁 × 𝒊 → 1 × 𝒐𝒉 ∈ ℝ𝑑, 𝒊 ∈ ℝ
𝑑
𝑁

Background Methodology AnalysisMotivation Results

RevMUX: Reverse Demultiplexer

Prefilling
Down

Projection

Reversible

Multiplexer

Reverse

Demultiplexer

Up

Projection
Prediction

Multiplexing Layer Demultiplexing Layer

Large Language Model

Reversible Multiplexer Reverse Demultiplexer

Large Language Model

Background Methodology AnalysisMotivation Results

RevMUX: Reverse Demultiplexer

Reversible Multiplexer Reverse Demultiplexer

Large Language Model

• The reverse demultiplexer decouples the mixed inputs using the same F and G

1 × ℝ𝑑 → 𝑁 ×ℝ
𝑑
𝑁

Background Methodology AnalysisMotivation Results

RevMUX: Training Loss

• Loss function

– Cross-entropy: classification

– InfoNCE loss: match the demultiplexed outputs to those from the standard SISO forward pass

– Joint loss: ℒ = ℒce + 𝜆ℒinfo

ℒce = −
1

𝑁
෍

𝑖=1

𝑁

෍

𝑐=1

𝐶

𝑦𝑖,𝑐log(ො𝑦𝑖,𝑐)

ℒinfo = −
1

𝑁
෍

𝑘=1

𝑁

𝔼 [log
exp(መ𝐡𝑘 ∙ 𝐡𝑘)

σ𝑗=1
𝑁 exp(መ𝐡𝑘 ∙ 𝐡𝑗)

]

Background Methodology AnalysisMotivation Results

Comparison with baselines

• The reversible multiplexer and the reverse demultiplexer together enhance the performance

• RevMUX () is comparable to DataMUX ()

Background Methodology AnalysisMotivation Results

Inference Efficiency Comparison

• Although RevMUX () has slightly higher average FLOPs than DataMUX (), it achieves about
55% to 60% speedups on average, without fine-tuning the backbone language models.

Background Methodology AnalysisMotivation Results

Scalability to Larger Model

• RevMUX is scalable to
different model types.

• RevMUX is scalable to billion-
scale decoder-only LLMs

• Both the reversible
multiplexer and reverse
demultiplexer remains
effective on larger-scale LLMs

Background Methodology AnalysisMotivation Results

Scalability to Larger N

• RevMUX outperforms MUX-PLM when N=2

• RevMUX maintains comparable or superior performance with larger N

Background Methodology AnalysisMotivation Results

Model Analysis – Number of Prefilling Layer

• Increase the number of prefilling layers retains a better performance

• With a sufficient number of prefilling layers (e.g., 𝑙 = 6), the model can maintain relatively high
accuracy even when 𝑁 = 16.

Takeaway messages

• We addresses the need for high throughput through data multiplexing, handling

batches of concurrent queries while maintaining satisfactory downstream

performance

– Freezing the backbone LLM and allow it to be reused in all tasks.

– Creating a reversible adapter to enhance the decoupling of mixed inputs.

• RevMUX has demonstrated that

– it has a better downstream performance than baselines that require finetuning the LLM.

– it can be scaled to larger billion-scale LLMs

– it can be scaled to 16-inputs.

References

• [1] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, Ping Luo. Omnidirectionally calibrated quantization for large language models. ICLR 2024.

• [2] Chengyuan Liu, Yangyang Kang, Fubang Zhao, Kun Kuang, Zhuoren Jiang, Changlong Sun, Fei Wu.
Evolving knowledge distillation with large language models and active learning. LREC-COLING 2024.

• [3] Yaniv Leviathan, Matan Kalman, Yossi Matias. Fast inference from transformers via speculative
decoding. ICML 2023.

• [4] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, ClarkW. Barrett, Zhangyang Wang, Beidi Chen. H2O: heavy-hitter oracle
for efficient generative inference of large language models. NeurIPS 2023.

• [5] Vishvak Murahari, Carlos E. Jimenez, Runzhe Yang, Karthik Narasimhan. DataMUX: Data Multiplexing
for Neural Networks. NeurIPS 2022.

• [6] Vishvak Murahari, Ameet Deshpande, Carlos E. Jimenez, Izhak Shafran, Mingqiu Wang, Yuan Cao,
Karthik Narasimhan. Data multiplexing for high-throughput language models. Findings of EMNLP 2023.

	Default Section
	Slide 1: RevMUX: Data Multiplexing with Reversible Adapters for Efficient LLM Batch Inference
	Slide 2: Research Background
	Slide 3: Data Multiplexing for Batch Inference
	Slide 4: Motivation
	Slide 5: RevMUX: Overall Architecture
	Slide 6: RevMUX: Prefilling
	Slide 7: RevMUX: Reversible Multiplexer
	Slide 8: RevMUX: Reverse Demultiplexer
	Slide 9: RevMUX: Reverse Demultiplexer
	Slide 10: RevMUX: Training Loss
	Slide 11: Comparison with baselines
	Slide 12: Inference Efficiency Comparison
	Slide 13: Scalability to Larger Model
	Slide 14: Scalability to Larger N
	Slide 15: Model Analysis – Number of Prefilling Layer
	Slide 17: Takeaway messages
	Slide 18: References

