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Research Background

• LLM-as-a-Service requires efficient inference.

• Three primary concerns:

– Latency (the response time): Quantization[1], Model distillation[2].

– Memory usage (during long-sequence processing): Speculative decoding[3], KV Cache[4].

– Throughput (number of concurrent queries): DataMUX[5], MUX-PLM[6]. Batch Inference
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Data Multiplexing for Batch Inference

• The Multi-Input Multi-Output (MIMO) Architecture

– Multiplexer: mix a batch of N data samples into one

– Demultiplexer: de-mix the models’ output into a batch

Large Language Model

Multiplexer Demultiplexer

Large Language Model

Mini-batch processing

Mix𝑵 = 𝟐

DataMUX
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Motivation

Current MIMO-style models consider MIMO as a new task and train LLM together with the
multiplexer and demultiplexer [5,6], which results in …

• Failing to handle the original Single-Input Single-Output scenario

• Not applicable to increasingly larger models

Can we Freeze LLM while still 

achieve data multiplexing?
Multiplexer Demultiplexer

Large Language Model

Challenge: the fixed LLM can struggle 

to differentiate individuals within the 

consolidated inputs. 
How to trace and preserve the inputs?
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RevMUX: Overall Architecture
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RevMUX: Prefilling
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• Prefilling

– Use first 𝑙 layers to convert the input instances to dense representations: 

𝑁 × ℝ𝑑 → 𝑁 ×ℝ𝑑

– Ensure the feature space becoming more similar to the feature space seen 
during the backbone pre-training
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RevMUX: Reversible Multiplexer
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Mix 𝑵 = 𝟐 inputs into one

Down Projection: 𝑁 × 𝒉 → 𝑁 × 𝒊

multiplexer: 𝑁 × 𝒊 → 1 × 𝒐𝒉 ∈ ℝ𝑑, 𝒊 ∈ ℝ
𝑑
𝑁
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RevMUX: Reverse Demultiplexer
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RevMUX: Reverse Demultiplexer

Reversible Multiplexer Reverse Demultiplexer

Large Language Model

• The reverse demultiplexer decouples the mixed inputs using the same F and G

1 × ℝ𝑑 → 𝑁 ×ℝ
𝑑
𝑁
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RevMUX: Training Loss

• Loss function

– Cross-entropy: classification

– InfoNCE loss: match the demultiplexed outputs to those from the standard SISO forward pass

– Joint loss: ℒ = ℒce + 𝜆ℒinfo
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Comparison with baselines

• The reversible multiplexer and the reverse demultiplexer together enhance the performance

• RevMUX (     ) is comparable to DataMUX (     )
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Inference Efficiency Comparison

• Although RevMUX (     ) has slightly higher average FLOPs than DataMUX (      ), it achieves about 
55% to 60% speedups on average, without fine-tuning the backbone language models.
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Scalability to Larger Model

• RevMUX is scalable to 
different model types.

• RevMUX is scalable to billion-
scale decoder-only LLMs

• Both the reversible 
multiplexer and reverse 
demultiplexer remains 
effective on larger-scale LLMs
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Scalability to Larger N

• RevMUX outperforms MUX-PLM when N=2

• RevMUX maintains comparable or superior performance with larger N
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Model Analysis – Number of Prefilling Layer

• Increase the number of prefilling layers retains a better performance 

• With a sufficient number of prefilling layers (e.g., 𝑙 = 6), the model can maintain relatively high 
accuracy even when 𝑁 = 16.



Takeaway messages

• We addresses the need for high throughput through data multiplexing, handling 

batches of concurrent queries while maintaining satisfactory downstream 

performance

– Freezing the backbone LLM and allow it to be reused in all tasks.

– Creating a reversible adapter to enhance the decoupling of mixed inputs.

• RevMUX has demonstrated that

– it has a better downstream performance than baselines that require finetuning the LLM.

– it can be scaled to larger billion-scale LLMs

– it can be scaled to 16-inputs.
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